Monsters

GP: 22 | W: 15 | L: 6 | OTL: 1 | P: 31
GF: 82 | GA: 80 | PP%: 66.10% | PK%: 40.32%
GM : Ron Dubin | Morale : 50 | Team Overall : 54
Next Games vs Admirals
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Landon FerraroX99.007368856568575759745359655654556150580
2Mitch CallahanXX99.007570856970687349504745614344445450540
3Clarke MacArthurX99.007242877062323050506046644244445850520
4Matt GaudreauXX100.006855996555505147504544574244445250500
5Jake Walman (R)X99.007874877174656950254541633944445550580
6Andrew Nielsen (R)X100.006777426877677151254641573944445150560
Scratches
1Jarred TinordiX95.067986636586656949254241633944445350580
TEAM AVERAGE98.72736778687058605143484561434546555055
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Maxime Lagace100.00465453735042434850466545454850490
Scratches
TEAM AVERAGE100.0046545373504243485046654545485049
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Landon FerraroMonsters (Clb)C223448820261036381704010720.00%2051223.3011152616270005331361.24%5343123153.2000200633
2Mitch CallahanMonsters (Clb)LW/RW22253863-432302618124406420.16%1747221.479132213281013121147.73%44549022.6700123242
3Clarke MacArthurMonsters (Clb)LW222223454201924145447615.17%2346921.3337106210000194050.00%744016031.9200000206
4Jake WalmanMonsters (Clb)D22123042-32925343613433518.96%5663628.9397161637000337110.00%01431011.3200122121
5Andrew NielsenMonsters (Clb)D228243216335432467293711.94%4252423.82314517000021100.00%0921001.2200025210
6Jarred TinordiMonsters (Clb)D911011384301582710133.70%1320222.4506611400005000.00%039001.0900213000
7Kyle BaunBlue JacketsRW45510000421711029.41%57919.7521334000070146.34%4143002.5300000110
Team Total or Average123107178285123613017715068419735815.64%176289523.5437508760150101111368658.30%6931551121111.97006713141112
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
Team Total or Average0.0000.0000.000


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers CONT StatusType Current Salary Salary Year 2 Salary Year 3 Salary Year 4 Salary Year 5 Salary Year 6 Salary Year 7 Salary Year 8 Salary Year 9 Salary Year 10 Link
Andrew NielsenMonsters (Clb)D221996-11-13Yes227 Lbs6 ft4NoNoNo2RFAPro & Farm750,000$750,000$Link
Clarke MacArthurMonsters (Clb)LW321986-07-14 7:21:32 AMNo192 Lbs6 ft0NoNoNo2UFAPro & Farm4,650,000$4,650,000$Link
Jake WalmanMonsters (Clb)D221996-02-20Yes170 Lbs6 ft1NoNoNo3RFAPro & Farm700,000$700,000$700,000$Link
Jarred TinordiMonsters (Clb)D251993-02-20No230 Lbs6 ft6NoNoNo2RFAPro & Farm700,000$700,000$Link
Landon FerraroMonsters (Clb)C271991-08-08No186 Lbs6 ft0NoNoNo3RFAPro & Farm750,000$750,000$750,000$Link
Matt GaudreauMonsters (Clb)LW/RW231994-12-05No146 Lbs5 ft9NoNoNo1RFAPro & Farm750,000$Link
Maxime LagaceMonsters (Clb)D251993-01-11No190 Lbs6 ft2NoNoNo2RFAPro & Farm650,000$650,000$Link
Mitch CallahanMonsters (Clb)LW/RW271991-08-17No190 Lbs6 ft0NoNoNo1RFAPro & Farm625,000$Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
825.38191 Lbs6 ft12.001,196,875$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Mitch CallahanLandon Ferraro40122
2Clarke MacArthur30122
3Landon FerraroMitch Callahan20122
4Clarke MacArthur10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Jake Walman40122
2Andrew Nielsen30122
3Jake Walman20122
4Andrew Nielsen10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Mitch CallahanLandon Ferraro60122
2Clarke MacArthur40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Jake Walman60122
2Andrew Nielsen40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Landon Ferraro60122
2Mitch CallahanClarke MacArthur40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Jake Walman60122
2Andrew Nielsen40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
160122Jake Walman60122
2Landon Ferraro40122Andrew Nielsen40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Landon Ferraro60122
2Mitch CallahanClarke MacArthur40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Jake Walman60122
2Andrew Nielsen40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Mitch CallahanLandon FerraroJake Walman
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Mitch CallahanLandon FerraroJake Walman
Extra Forwards
Normal PowerPlayPenalty Kill
, Mitch Callahan, Clarke MacArthur, Mitch CallahanClarke MacArthur
Extra Defensemen
Normal PowerPlayPenalty Kill
Jake Walman, , Andrew NielsenJake Walman, Andrew Nielsen
Penalty Shots
, Landon Ferraro, Mitch Callahan, Clarke MacArthur,
Goalie
#1 : , #2 :


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals321000002523211000000972211000001616040.667253964003055763139276294339101043254494375.00%7357.14%017937148.25%15737541.87%25655646.04%449276504192370172
2Checkers10001000651100010006510000000000021.000612180030557635427629433910349018100.00%000.00%017937148.25%15737541.87%25655646.04%449276504192370172
3Falcons210001001817100000000000210001001817130.7501828460030557638227629433910863741348562.50%8450.00%017937148.25%15737541.87%25655646.04%449276504192370172
4Griffins3210000025214110000001082211000001513240.667254671003055763122276294339101183280388450.00%10550.00%017937148.25%15737541.87%25655646.04%449276504192370172
5Gulls1010000024-21010000024-20000000000000.00023500305576339276294339101977183266.67%10100.00%017937148.25%15737541.87%25655646.04%449276504192370172
6IceHogs211000001616000000000000211000001616020.5001631470030557638327629433910924435366466.67%10730.00%117937148.25%15737541.87%25655646.04%449276504192370172
7Phantoms10100000511-610100000511-60000000000000.0005914003055763322762943391052208135240.00%4250.00%017937148.25%15737541.87%25655646.04%449276504192370172
8Rampage11000000752000000000001100000075221.00071421003055763372762943391051116811100.00%3233.33%017937148.25%15737541.87%25655646.04%449276504192370172
Since Last GM Reset221260310016415681273020008280210530110082766310.70516428544900305576391927629433910890344299362593966.10%623740.32%117937148.25%15737541.87%25655646.04%449276504192370172
10Sound Tigers11000000871110000008710000000000021.00081523003055763402762943391055234183266.67%2150.00%017937148.25%15737541.87%25655646.04%449276504192370172
11Stars220000001815322000000181530000000000041.0001831490030557638727629433910732920347685.71%5420.00%017937148.25%15737541.87%25655646.04%449276504192370172
Total221260310016415681273020008280210530110082766310.70516428544900305576391927629433910890344299362593966.10%623740.32%117937148.25%15737541.87%25655646.04%449276504192370172
Vs Conference191150210014513312962010006357610530110082766270.71114524939400305576379327629433910749292287313503570.00%563439.29%117937148.25%15737541.87%25655646.04%449276504192370172
Vs Division1164000008275763100000433855330000039372120.5458214122300305576344727629433910449180151195231982.61%332233.33%117937148.25%15737541.87%25655646.04%449276504192370172
15Wild11000000981110000009810000000000021.0009142300305576351276294339105023212022100.00%3233.33%017937148.25%15737541.87%25655646.04%449276504192370172
16Wolves2110000078-12110000078-10000000000020.5007121900305576350276294339107941154833100.00%5420.00%017937148.25%15737541.87%25655646.04%449276504192370172
17Wolves20002000181621000100087110001000109141.0001831490030557631032762943391077368288562.50%4325.00%017937148.25%15737541.87%25655646.04%449276504192370172

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
2231W416428544991989034429936200
All Games
GPWLOTWOTL SOWSOLGFGA
221263100164156
Home Games
GPWLOTWOTL SOWSOLGFGA
127320008280
Visitor Games
GPWLOTWOTL SOWSOLGFGA
105311008276
Last 10 Games
WLOTWOTL SOWSOL
820000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
593966.10%623740.32%1
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
276294339103055763
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
17937148.25%15737541.87%25655646.04%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
449276504192370172


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
2 - 2018-10-0311Monsters6Admirals9LBoxScore
4 - 2018-10-0521Griffins8Monsters10WBoxScore
6 - 2018-10-0738Wild8Monsters9WBoxScore
9 - 2018-10-1065Wolves3Monsters4WBoxScore
10 - 2018-10-1179Monsters8Falcons9LXBoxScore
13 - 2018-10-1495Admirals7Monsters9WBoxScore
15 - 2018-10-16113Monsters10Griffins5WBoxScore
17 - 2018-10-18125Monsters7IceHogs9LBoxScore
18 - 2018-10-19135Wolves5Monsters3LBoxScore
21 - 2018-10-22153Monsters10Admirals7WBoxScore
23 - 2018-10-24167Gulls4Monsters2LBoxScore
26 - 2018-10-27190Stars8Monsters10WBoxScore
27 - 2018-10-28200Monsters10Wolves9WXBoxScore
30 - 2018-10-31220Stars7Monsters8WBoxScore
31 - 2018-11-01227Monsters7Rampage5WBoxScore
34 - 2018-11-04248Monsters9IceHogs7WBoxScore
36 - 2018-11-06259Phantoms11Monsters5LBoxScore
38 - 2018-11-08273Monsters5Griffins8LBoxScore
40 - 2018-11-10289Wolves7Monsters8WXBoxScore
42 - 2018-11-12301Monsters10Falcons8WBoxScore
45 - 2018-11-15322Checkers5Monsters6WXBoxScore
49 - 2018-11-19343Sound Tigers7Monsters8WBoxScore
51 - 2018-11-21353Monsters-Crunch-
53 - 2018-11-23374Stars-Monsters-
55 - 2018-11-25384Monsters-Falcons-
58 - 2018-11-28401Monsters-Marlies-
60 - 2018-11-30417Pirates-Monsters-
62 - 2018-12-02434Monsters-Comets-
64 - 2018-12-04446Admirals-Monsters-
66 - 2018-12-06464Monsters-Wolves-
68 - 2018-12-08476Wolves-Monsters-
70 - 2018-12-10492Monsters-Rampage-
72 - 2018-12-12506Barracuda-Monsters-
74 - 2018-12-14524Monsters-Admirals-
76 - 2018-12-16536Monsters-Gulls-
78 - 2018-12-18547Comets-Monsters-
80 - 2018-12-20563Monsters-Gulls-
82 - 2018-12-22572Monsters-Senators-
84 - 2018-12-24582Bears-Monsters-
87 - 2018-12-27603Monsters-Wild-
88 - 2018-12-28614Reign-Monsters-
91 - 2018-12-31637Falcons-Monsters-
93 - 2019-01-02653Monsters-Reign-
95 - 2019-01-04666Admirals-Monsters-
97 - 2019-01-06679Monsters-Stars-
98 - 2019-01-07687Monsters-IceHogs-
101 - 2019-01-10702Monsters-Bruins-
102 - 2019-01-11711Wild-Monsters-
105 - 2019-01-14728Monsters-Barracuda-
107 - 2019-01-16741IceCaps-Monsters-
109 - 2019-01-18756Monsters-Devils-
111 - 2019-01-20770IceHogs-Monsters-
113 - 2019-01-22782Monsters-Barracuda-
115 - 2019-01-24797Monsters-Comets-
116 - 2019-01-25805Wild-Monsters-
118 - 2019-01-27823Monsters-Penguins-
120 - 2019-01-29835Moose-Monsters-
124 - 2019-02-02862Gulls-Monsters-
125 - 2019-02-03869Monsters-Condors-
128 - 2019-02-06893Griffins-Monsters-
130 - 2019-02-08908Monsters-Wolf Pack-
132 - 2019-02-10924Condors-Monsters-
134 - 2019-02-12933Monsters-Condors-
137 - 2019-02-15955Rampage-Monsters-
138 - 2019-02-16963Monsters-Heat-
141 - 2019-02-19983Monsters-Wolves-
142 - 2019-02-20992IceHogs-Monsters-
Trade Deadline --- Trades can’t be done after this day is simulated!
145 - 2019-02-231017Reign-Monsters-
148 - 2019-02-261036Monsters-Wolves-
149 - 2019-02-271048Griffins-Monsters-
153 - 2019-03-031077Condors-Monsters-
157 - 2019-03-071102Gulls-Monsters-
158 - 2019-03-081112Monsters-Stars-
163 - 2019-03-131135Heat-Monsters-
164 - 2019-03-141148Monsters-Americans-
168 - 2019-03-181165Heat-Monsters-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
26 0 - 0.00% 0$0$3000100

Expenses
Players Total SalariesPlayers Total Average SalariesCoaches Salaries
957,500$ 899,700$ 0$
Year To Date ExpensesSalary Cap Per DaysSalary Cap To Date
266,615$ 0$ 264,570$

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 122 5,599$ 683,078$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
20182212603100164156812730200082802105301100827663116428544900305576391927629433910890344299362593966.10%623740.32%117937148.25%15737541.87%25655646.04%449276504192370172
Total Regular Season2212603100164156812730200082802105301100827663116428544900305576391927629433910890344299362593966.10%623740.32%117937148.25%15737541.87%25655646.04%449276504192370172