Rampage

GP: 45 | W: 18 | L: 24 | OTL: 3 | P: 39
GF: 316 | GA: 330 | PP%: 70.99% | PK%: 39.05%
GM : Martin Grech | Morale : 50 | Team Overall : 58
Next Games #717 vs Admirals
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1David Kampf (R)XX100.006742917672638160906259762550506550620
2Josh LeivoX100.005740887165574477576557702550506350600
3Iiro PakarinenX100.008345947778565957305357712559596250600
4Justin AugerX100.008687856487737855505056685344446250590
5Adam TambelliniX100.007264916464778357715159615644446150580
6Michael Dal ColleX100.007874876074788456505651644844445950580
7Luke Johnson (R)X100.007270766770818856705057615444446050580
8Alex Schoenborn (R)X100.007472786272626648504545604344445350520
9Ben HarpurX100.008259857082658257254247822548486150650
10Slater KoekkoekX100.007543857169577258255051672554556050610
11Julius HonkaX100.006541898267627670254747592550505850600
12Andreas EnglundX100.007871947471768446253739623744445450590
13Dillon HeatheringtonX100.008178896578707550254441643944445550590
14Jordan SchmaltzX100.006141867372566563254847562546465650570
15Josh Jacobs (R)X100.007775826275646849254439623744445350570
16Dylan BlujusX100.007673836773545551254542624044445350560
17Josh Wesley (R)X100.007977836577515443253239613744445050540
Scratches
TEAM AVERAGE100.00746286697365715641484965364747585059
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Nick Schneider100.0065696577657064686963455555150650
2Zane McIntyre (R)100.00627088796169576665633044446450630
Scratches
1Christopher Gibson100.00575569725762616564633045456050590
2Hunter Miska (R)100.00556784655156556154543044445650560
3Mackenzie Blackwood100.00506379904552505549493044445250550
4Matiss Kivlenieks (R)100.00537493724755505849493044445450550
5Marcus Hogberg (R)100.00505670874852505551513044445250540
6Chris Driedger100.00485366804648505448483044444950520
7Matt Hackett100.00494860664955505455543046465250520
TEAM AVERAGE100.0054627576525854605655324646495057
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Guy Boucher93576484635569CAN4611,000,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Josh LeivoRampage (Col)LW456763130-301810465032510620720.62%2695321.192226483072000002156.82%4479460112.7300002729
2Julius HonkaRampage (Col)D452590115-7242029452871291378.71%74110824.642129505082011664310.00%03949012.0700022164
3Luke JohnsonRampage (Col)C454454981622042492078014221.26%2073716.381319321847000002055.84%7706815062.6601112514
4Michael Dal ColleRampage (Col)LW45295079479655539177519616.38%3072716.1681523947000003156.76%373627012.1700085054
5Justin AugerRampage (Col)RW452425491151255335161469914.91%1655412.3231449000000050.00%263714011.7700014221
6Adam TambelliniRampage (Col)C4525184310121031291936512812.95%1252011.5721322000001056.75%363537011.6511110121
7Dillon HeatheringtonRampage (Col)D4572835-20756551359145427.69%6876817.08410141035000231100.00%0647000.9100355010
8Andreas EnglundRampage (Col)D4552833-26423035347046367.14%5878817.52459738000431110.00%0439000.8401051001
9Ben HarpurRampage (Col)D2632629-2213550557228314.17%5470727.202577440110390033.33%31533000.8200100000
10Slater KoekkoekRampage (Col)D1331417-47521154520156.67%1630023.09235415000312000.00%01015001.1300100100
11Jordan SchmaltzRampage (Col)D3501515-16007143418310.00%1839211.210000000018000.00%0516000.7600000000
12Dylan BlujusRampage (Col)D4501212-419151243612170.00%133006.670111500003000.00%0112000.8000111000
13Josh JacobsRampage (Col)D4501212-11433524174328220.00%3955412.3201111200000000.00%0125000.4300034000
14Iiro PakarinenRampage (Col)RW78311-700121043142318.60%413218.9620223000000025.00%8214011.6600000100
15Alex SchoenbornRampage (Col)RW45134-23241024106429561.56%43217.1400000000000080.00%10386000.2500002000
16Josh WesleyRampage (Col)D45022-50021108560.00%122675.950000000000000.00%0017000.1500000000
Team Total or Average621241443684-1494693155134511856722108812.98%464913514.71831161991454180221619113455.99%12614133720221.501382728181924
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
Team Total or Average0.0000.0000.000


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Adam TambelliniRampage (Col)C241994-10-31No195 Lbs6 ft4NoNoNo1RFAPro & Farm750,000$0$0$NoLink
Alex SchoenbornRampage (Col)RW231995-12-11Yes196 Lbs6 ft1NoNoNo2RFAPro & Farm750,000$0$0$NoLink
Andreas EnglundRampage (Col)D221996-01-21No189 Lbs6 ft3NoNoNo2RFAPro & Farm850,000$0$0$NoLink
Ben HarpurRampage (Col)D241995-01-12No222 Lbs6 ft6NoNoNo1RFAPro & Farm600,000$0$0$NoLink
Chris DriedgerRampage (Col)G241994-05-18No205 Lbs6 ft4NoNoNo1RFAPro & Farm700,000$0$0$NoLink
Christopher GibsonRampage (Col)G261992-12-27No188 Lbs6 ft1NoNoNo4RFAPro & Farm750,000$0$0$NoLink
David KampfRampage (Col)C/RW241995-01-12Yes191 Lbs6 ft2NoNoNo2RFAPro & Farm1,000,000$0$0$NoLink
Dillon HeatheringtonRampage (Col)D231995-05-08No215 Lbs6 ft4NoNoNo1RFAPro & Farm800,000$0$0$NoLink
Dylan BlujusRampage (Col)D241994-01-22No203 Lbs6 ft3NoNoNo2RFAPro & Farm750,000$0$0$NoLink
Hunter MiskaRampage (Col)G231995-07-07Yes170 Lbs6 ft1NoNoNo2RFAPro & Farm1,000,000$0$0$NoLink
Iiro PakarinenRampage (Col)RW271991-08-25No209 Lbs6 ft1NoNoNo4RFAPro & Farm1,000,000$0$0$NoLink
Jordan SchmaltzRampage (Col)D251993-10-08No190 Lbs6 ft2NoNoNo1RFAPro & Farm900,000$0$0$NoLink
Josh JacobsRampage (Col)D221996-02-14Yes200 Lbs6 ft2NoNoNo2RFAPro & Farm850,000$0$0$NoLink
Josh LeivoRampage (Col)LW251993-05-26No205 Lbs6 ft2NoNoNo2RFAPro & Farm750,000$0$0$NoLink
Josh WesleyRampage (Col)D221996-04-09Yes205 Lbs6 ft3NoNoNo3RFAPro & Farm600,000$0$0$NoLink
Julius HonkaRampage (Col)D231995-12-03No195 Lbs5 ft11NoNoNo2RFAPro & Farm1,000,000$0$0$NoLink
Justin AugerRampage (Col)RW241994-05-14No229 Lbs6 ft7NoNoNo2RFAPro & Farm750,000$0$0$NoLink
Luke JohnsonRampage (Col)C241994-09-18Yes198 Lbs5 ft11NoNoNo2RFAPro & Farm500,000$0$0$NoLink
Mackenzie BlackwoodRampage (Col)G221996-12-08No224 Lbs6 ft4NoNoNo2RFAPro & Farm850,000$0$0$NoLink
Marcus HogbergRampage (Col)G241994-11-25Yes209 Lbs6 ft5NoNoNo3RFAPro & Farm700,000$0$0$NoLink
Matiss KivlenieksRampage (Col)G221996-08-26Yes184 Lbs6 ft2NoNoNo2RFAPro & Farm1,000,000$0$0$NoLink
Matt HackettRampage (Col)G271991-03-07No171 Lbs6 ft2NoNoNo3RFAPro & Farm750,000$0$0$NoLink
Michael Dal ColleRampage (Col)LW221996-06-19No198 Lbs6 ft3NoNoNo2RFAPro & Farm950,000$0$0$NoLink
Nick SchneiderRampage (Col)G211997-07-21No181 Lbs6 ft2NoNoNo2RFAPro & Farm750,000$0$0$NoLink
Slater KoekkoekRampage (Col)D241994-02-17No198 Lbs6 ft2NoNoNo2RFAPro & Farm850,000$0$0$NoLink
Zane McIntyreRampage (Col)G261992-08-20Yes206 Lbs6 ft2NoNoNo3RFAPro & Farm750,000$0$0$NoLink
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2623.73199 Lbs6 ft32.12803,846$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Josh Leivo40122
2Michael Dal ColleLuke Johnson30122
3Adam TambelliniJustin Auger20122
4Alex Schoenborn10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Julius Honka40122
2Andreas EnglundDillon Heatherington30122
3Josh Jacobs20122
4Dylan BlujusJosh Wesley10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Josh Leivo60122
2Michael Dal ColleLuke Johnson40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Julius Honka60122
2Andreas EnglundDillon Heatherington40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
160122
2Josh Leivo40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Julius Honka60122
2Andreas EnglundDillon Heatherington40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
160122Julius Honka60122
240122Andreas EnglundDillon Heatherington40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
160122
2Josh Leivo40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Julius Honka60122
2Andreas EnglundDillon Heatherington40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Josh LeivoJulius Honka
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Josh LeivoJulius Honka
Extra Forwards
Normal PowerPlayPenalty Kill
Justin Auger, Adam Tambellini, Alex SchoenbornJustin Auger, Adam TambelliniAlex Schoenborn
Extra Defensemen
Normal PowerPlayPenalty Kill
Josh Jacobs, , Dylan BlujusJosh Jacobs, Dylan Blujus
Penalty Shots
, , , Josh Leivo, Justin Auger
Goalie
#1 : , #2 :


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Americans11000000633110000006330000000000021.00061016006712911744078068064013411461933100.00%3166.67%036884443.60%27869540.00%479113042.39%1042698954374718333
2Bears1010000012-11010000012-10000000000000.0001230067129117431780680640133820418000.00%2150.00%036884443.60%27869540.00%479113042.39%1042698954374718333
3Bruins1000010089-1000000000001000010089-110.5008142200671291174587806806401340204174375.00%20100.00%036884443.60%27869540.00%479113042.39%1042698954374718333
4Checkers10100000610-40000000000010100000610-400.0006111700671291174497806806401331126172150.00%3166.67%036884443.60%27869540.00%479113042.39%1042698954374718333
5Comets321000002420410100000511-6220000001991040.66724366000671291174124780680640131074737548675.00%11827.27%036884443.60%27869540.00%479113042.39%1042698954374718333
6Condors6410100049371242101000312472200000018135100.8334989138006712911743167806806401318849889916956.25%10550.00%036884443.60%27869540.00%479113042.39%1042698954374718333
7Falcons312000002120111000000936202000001217-520.33321416200671291174135780680640131243757408787.50%6350.00%036884443.60%27869540.00%479113042.39%1042698954374718333
8Griffins10100000711-410100000711-40000000000000.000712190067129117441780680640135213171333100.00%110.00%036884443.60%27869540.00%479113042.39%1042698954374718333
9Gulls1010000039-61010000039-60000000000000.00036900671291174477806806401332760194250.00%5420.00%036884443.60%27869540.00%479113042.39%1042698954374718333
10Heat312000002025-500000000000312000002025-520.333203555006712911741387806806401313960295013646.15%8537.50%036884443.60%27869540.00%479113042.39%1042698954374718333
11IceHogs311010002824410100000810-2210010002014640.6672853810067129117415478068064013119451855121083.33%4250.00%136884443.60%27869540.00%479113042.39%1042698954374718333
12Monsters20200000915-620200000915-60000000000000.00091625006712911749078068064013763018317457.14%4325.00%036884443.60%27869540.00%479113042.39%1042698954374718333
13Moose1010000067-11010000067-10000000000000.0006915006712911743578068064013422042411100.00%2150.00%036884443.60%27869540.00%479113042.39%1042698954374718333
14Penguins10100000711-40000000000010100000711-400.0007111800671291174427806806401342127044250.00%5340.00%036884443.60%27869540.00%479113042.39%1042698954374718333
15Pirates211000001312121100000131210000000000020.500132538006712911749178068064013842613285480.00%4250.00%036884443.60%27869540.00%479113042.39%1042698954374718333
16Reign10001000761100010007610000000000021.00071320006712911745878068064013401072022100.00%110.00%036884443.60%27869540.00%479113042.39%1042698954374718333
17Stars311001002224-2211000001314-110000100910-130.500223759006712911741337806806401311537134411763.64%5340.00%036884443.60%27869540.00%479113042.39%1042698954374718333
Total45152403201316330-142381202001154157-32271201200162173-11390.4333165518670067129117421107806806401317495985847291319370.99%1056439.05%136884443.60%27869540.00%479113042.39%1042698954374718333
19Wild532000004334922000000261214312000001722-560.60043701130067129117425978068064013175657276151173.33%11918.18%036884443.60%27869540.00%479113042.39%1042698954374718333
20Wolf Pack1000000167-11000000167-10000000000010.50061218006712911744878068064013394101711100.00%5340.00%036884443.60%27869540.00%479113042.39%1042698954374718333
21Wolves1010000056-1000000000001010000056-100.0005712006712911744478068064013341341711100.00%220.00%036884443.60%27869540.00%479113042.39%1042698954374718333
22Wolves404000002538-1310100000411-7303000002127-600.0002542670067129117417778068064013191574767111090.91%11645.45%036884443.60%27869540.00%479113042.39%1042698954374718333
_Since Last GM Reset45152403201316330-142381202001154157-32271201200162173-11390.4333165518670067129117421107806806401317495985847291319370.99%1056439.05%136884443.60%27869540.00%479113042.39%1042698954374718333
_Vs Conference36131903100263269-6176902000122126-41971001100141143-2330.4582634577200067129117417167806806401313924704675851117870.27%795234.18%136884443.60%27869540.00%479113042.39%1042698954374718333
_Vs Division21101001000149155-6943010005964-51267000009091-1220.5241492624110067129117499578068064013821267325349624267.74%523238.46%036884443.60%27869540.00%479113042.39%1042698954374718333

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
4539W13165518672110174959858472900
All Games
GPWLOTWOTL SOWSOLGFGA
4515243201316330
Home Games
GPWLOTWOTL SOWSOLGFGA
238122001154157
Visitor Games
GPWLOTWOTL SOWSOLGFGA
227121200162173
Last 10 Games
WLOTWOTL SOWSOL
460000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
1319370.99%1056439.05%1
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
78068064013671291174
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
36884443.60%27869540.00%479113042.39%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
1042698954374718333


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
3 - 2018-10-0417Condors6Rampage7WXBoxScore
5 - 2018-10-0630Rampage11Comets4WBoxScore
7 - 2018-10-0846Gulls9Rampage3LBoxScore
9 - 2018-10-1066Griffins11Rampage7LBoxScore
10 - 2018-10-1175Rampage8Wolves10LBoxScore
13 - 2018-10-1494Condors8Rampage6LBoxScore
14 - 2018-10-15107Rampage3Wild6LBoxScore
16 - 2018-10-17117Rampage7Heat5WBoxScore
18 - 2018-10-19134Rampage9Condors7WBoxScore
20 - 2018-10-21148Pirates4Rampage6WBoxScore
22 - 2018-10-23161Rampage5Wolves7LBoxScore
24 - 2018-10-25176Wolves11Rampage4LBoxScore
26 - 2018-10-27193Rampage8IceHogs7WXBoxScore
28 - 2018-10-29208Wild7Rampage14WBoxScore
31 - 2018-11-01227Monsters7Rampage5LBoxScore
33 - 2018-11-03240Rampage8Wolves10LBoxScore
35 - 2018-11-05254Rampage9Condors6WBoxScore
37 - 2018-11-07268Reign6Rampage7WXBoxScore
40 - 2018-11-10290Wolf Pack7Rampage6LXXBoxScore
43 - 2018-11-13306Rampage6Checkers10LBoxScore
45 - 2018-11-15320Rampage6Falcons8LBoxScore
47 - 2018-11-17328Bears2Rampage1LBoxScore
50 - 2018-11-20346Rampage8Heat10LBoxScore
52 - 2018-11-22362IceHogs10Rampage8LBoxScore
54 - 2018-11-24378Rampage5Heat10LBoxScore
56 - 2018-11-26390Moose7Rampage6LBoxScore
59 - 2018-11-29414Rampage9Stars10LXBoxScore
60 - 2018-11-30424Rampage8Bruins9LXBoxScore
62 - 2018-12-02431Americans3Rampage6WBoxScore
64 - 2018-12-04451Condors2Rampage6WBoxScore
67 - 2018-12-07471Rampage12IceHogs7WBoxScore
68 - 2018-12-08483Rampage6Falcons9LBoxScore
70 - 2018-12-10492Monsters8Rampage4LBoxScore
73 - 2018-12-13515Falcons3Rampage9WBoxScore
76 - 2018-12-16538Wild5Rampage12WBoxScore
79 - 2018-12-19556Rampage7Penguins11LBoxScore
81 - 2018-12-21565Rampage5Wild9LBoxScore
83 - 2018-12-23576Condors8Rampage12WBoxScore
87 - 2018-12-27600Comets11Rampage5LBoxScore
89 - 2018-12-29624Pirates8Rampage7LBoxScore
91 - 2018-12-31634Rampage5Wolves6LBoxScore
94 - 2019-01-03658Rampage9Wild7WBoxScore
95 - 2019-01-04664Stars7Rampage8WBoxScore
99 - 2019-01-08688Stars7Rampage5LBoxScore
101 - 2019-01-10708Rampage8Comets5WBoxScore
103 - 2019-01-12717Admirals-Rampage-
106 - 2019-01-15739Rampage-Marlies-
108 - 2019-01-17749Rampage-Gulls-
109 - 2019-01-18759Comets-Rampage-
111 - 2019-01-20771Rampage-Comets-
114 - 2019-01-23788Rampage-IceCaps-
115 - 2019-01-24796Griffins-Rampage-
118 - 2019-01-27819Rampage-Reign-
119 - 2019-01-28827Wolves-Rampage-
122 - 2019-01-31849Rampage-Reign-
123 - 2019-02-01857Americans-Rampage-
126 - 2019-02-04879Crunch-Rampage-
128 - 2019-02-06892Rampage-Sound Tigers-
131 - 2019-02-09913Heat-Rampage-
133 - 2019-02-11926Rampage-Griffins-
135 - 2019-02-13941Barracuda-Rampage-
137 - 2019-02-15955Rampage-Monsters-
139 - 2019-02-17973Senators-Rampage-
141 - 2019-02-19984Rampage-Admirals-
143 - 2019-02-211002Rampage-Phantoms-
Trade Deadline --- Trades can’t be done after this day is simulated!
144 - 2019-02-221011Rampage-Griffins-
145 - 2019-02-231015Wolves-Rampage-
147 - 2019-02-251029Rampage-Phantoms-
149 - 2019-02-271046Heat-Rampage-
153 - 2019-03-031074Barracuda-Rampage-
156 - 2019-03-061097Wolves-Rampage-
158 - 2019-03-081111Rampage-Barracuda-
162 - 2019-03-121130Gulls-Rampage-
163 - 2019-03-131138Rampage-Admirals-
165 - 2019-03-151152Rampage-Devils-
168 - 2019-03-181169Gulls-Rampage-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
15 0 - 0.00% 0$0$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
1,220,524$ 2,090,000$ 1,640,000$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 1,218,039$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 69 12,222$ 843,318$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
201845152403201316330-142381202001154157-32271201200162173-11393165518670067129117421107806806401317495985847291319370.99%1056439.05%136884443.60%27869540.00%479113042.39%1042698954374718333
Total Regular Season45152403201316330-142381202001154157-32271201200162173-11393165518670067129117421107806806401317495985847291319370.99%1056439.05%136884443.60%27869540.00%479113042.39%1042698954374718333