Heat

GP: 45 | W: 24 | L: 18 | OTL: 3 | P: 51
GF: 326 | GA: 325 | PP%: 53.85% | PK%: 48.74%
GM : Dave Williams | Morale : 50 | Team Overall : 58
Next Games #721 vs Crunch
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Lance BoumaXX100.009069807378578359396057732567686550630
2Kasperi KapanenXX100.008044968065597662295571802549497250630
3Peter CehlarikX100.007775816775666762505862655945456450600
4Brian FlynnX100.007568926668565564806262655944446450590
5Tage ThompsonXX100.007544907278626167286258602547476350590
6Filip Chytil (R)X100.007065806565636363796260625745456350580
7Jeremy Bracco (R)X100.007264927364677058506547624544445950580
8Gabriel Gagne (R)XX100.007573806273666954684460625744446050560
9Cam DarcyX100.006868686568626359746053605044445850560
10Austin Wagner (R)X100.007071666271504955694758605544445750540
11Robin Kovacs (R)XX100.007365906265707649504745604344445450530
12Guillaume Brisebois (R)X100.007973926373748148254040633844445450580
13Dylan McIlrathX100.007684576584697646253541613944445150570
14Brenden KichtonX100.006966766066748051255939583744445350570
15Jeff Taylor (R)X100.007268826568505244253439583744444950520
Scratches
1Brett KulakX100.006752887571627358254848652556565950610
2Jacob Larsson (R)X87.897772877772586150254341623944445450580
TEAM AVERAGE99.29746682687163685645525263424747595058
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Connor Ingram (R)100.00636986766167626965643044446450630
2Evan Cowley (R)100.00504759835153505554533044445250540
Scratches
TEAM AVERAGE100.0057587380566056626059304444585059
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Kasperi KapanenHeat (Cgy)LW/RW457369142-191715616234110423521.41%51105523.4626214737690000717441.67%22892251102.69120301153
2Lance BoumaHeat (Cgy)C/LW455078128-157630105682326114521.55%2393220.7312294120670001562146.20%10934330142.7412312654
3Peter CehlarikHeat (Cgy)LW4549378618433574442507316819.60%2585218.959101916630112524150.94%536235052.0222214532
4Jeremy BraccoHeat (Cgy)RW4527507716202046321775512315.25%2079217.606713863000002156.10%416529011.9400013043
5Gabriel GagneHeat (Cgy)C/RW452821492343052332026812513.86%1263314.07000020001410252.94%344415021.5500402131
6Brett KulakHeat (Cgy)D2322224-17523314221254.76%4462427.14145346000044000.00%0829000.7701100011
7Austin WagnerHeat (Cgy)LW27101424-14155322274185513.51%1635012.98000011012132175.00%81110001.3700001101
8Brian FlynnHeat (Cgy)C1451722940242140123112.50%722616.17134424000000063.78%19684001.9400000011
9John MooreFlamesD1451621-5251528215126249.80%2637927.12347830000029000.00%0821001.1100030001
10Jacob LarssonHeat (Cgy)D4502121-20291545314929100.00%4776316.97022023000025000.00%0435000.5500012001
11Tage ThompsonHeat (Cgy)C/RW1181119-184015143992120.51%621219.31459820000081023.53%17125001.7900000100
12Guillaume BriseboisHeat (Cgy)D4501717-18272541474416300.00%7680117.8001122400002900100.00%1440000.4200113000
13Brenden KichtonHeat (Cgy)D450131311251513143414160.00%2152611.7100000000010000.00%0013000.4900012000
14Cam DarcyHeat (Cgy)C453710-91151712347238.82%72335.18000010110100056.88%16051000.8600001000
15Filip ChytilHeat (Cgy)C7358-5009142371313.04%59313.2901101000021059.46%3730001.7200000000
16Robin KovacsHeat (Cgy)LW/RW45224-9001161351015.38%12124.7200000000050083.33%634000.3800000000
17Dylan McIlrathHeat (Cgy)D21033-92915221123440.00%1625812.330000500003000.00%0011000.2300300000
Team Total or Average567265403668-863662306184831668529105815.89%403894815.7862871491064481236406191049.20%18743723072221.4947141220252218
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Evan CowleyHeat (Cgy)42200.8714.75240001914783100.000044000
Team Total or Average42200.8714.75240001914783100.000044000


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Austin WagnerHeat (Cgy)LW211997-06-23Yes178 Lbs6 ft1NoNoNo3RFAPro & Farm600,000$0$0$NoLink
Brenden KichtonHeat (Cgy)D261992-06-17No185 Lbs5 ft10NoNoNo2RFAPro & Farm650,000$0$0$NoLink
Brett KulakHeat (Cgy)D241994-05-01No187 Lbs6 ft2NoNoNo2RFAPro & Farm650,000$0$0$NoLink
Brian FlynnHeat (Cgy)C291989-07-26No183 Lbs6 ft1NoNoNo2UFAPro & Farm750,000$0$0$NoLink
Cam DarcyHeat (Cgy)C241994-03-02No186 Lbs6 ft0NoNoNo1RFAPro & Farm500,000$0$0$NoLink
Connor IngramHeat (Cgy)G211997-03-31Yes204 Lbs6 ft1NoNoNo3RFAPro & Farm700,000$0$0$NoLink
Dylan McIlrathHeat (Cgy)D261992-04-20No236 Lbs6 ft5NoNoNo1RFAPro & Farm650,000$0$0$NoLink
Evan CowleyHeat (Cgy)G231995-07-31Yes201 Lbs6 ft4NoNoNo3RFAPro & Farm500,000$0$0$NoLink
Filip ChytilHeat (Cgy)C191999-09-05Yes178 Lbs6 ft1NoNoNo3ELCPro & Farm900,000$0$0$NoLink
Gabriel GagneHeat (Cgy)C/RW221996-11-10Yes186 Lbs6 ft5NoNoNo2RFAPro & Farm850,000$0$0$NoLink
Guillaume BriseboisHeat (Cgy)D211997-07-21Yes175 Lbs6 ft2NoNoNo3RFAPro & Farm750,000$0$0$NoLink
Jacob Larsson (Out of Payroll)Heat (Cgy)D211997-04-29Yes191 Lbs6 ft2NoNoNo3RFAPro & Farm900,000$0$0$YesLink
Jeff TaylorHeat (Cgy)D241994-04-13Yes185 Lbs6 ft0NoNoNo3RFAPro & Farm500,000$0$0$NoLink
Jeremy BraccoHeat (Cgy)RW211997-03-17Yes180 Lbs5 ft9NoNoNo3RFAPro & Farm800,000$0$0$NoLink
Kasperi KapanenHeat (Cgy)LW/RW221996-07-23No185 Lbs6 ft1NoNoNo1RFAPro & Farm900,000$0$0$NoLink
Lance BoumaHeat (Cgy)C/LW271991-07-14 1:21:32 PMNo208 Lbs6 ft2NoNoNo1RFAPro & Farm1,000,000$0$0$NoLink
Peter CehlarikHeat (Cgy)LW231995-05-12No202 Lbs6 ft2NoNoNo2RFAPro & Farm700,000$0$0$NoLink
Robin KovacsHeat (Cgy)LW/RW221996-11-15Yes176 Lbs6 ft0NoNoNo2RFAPro & Farm750,000$0$0$NoLink
Tage ThompsonHeat (Cgy)C/RW211997-10-30No185 Lbs6 ft5NoNoNo2RFAPro & Farm900,000$0$0$NoLink
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
1923.00190 Lbs6 ft22.21734,211$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Kasperi KapanenLance Bouma40122
2Peter CehlarikJeremy Bracco30122
3Gabriel Gagne20122
4Robin KovacsCam DarcyKasperi Kapanen10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
140122
2Guillaume Brisebois30122
3Brenden Kichton20122
410122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Kasperi KapanenLance Bouma60122
2Peter CehlarikJeremy Bracco40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
160122
2Guillaume Brisebois40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Kasperi KapanenLance Bouma60122
2Peter Cehlarik40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
160122
2Guillaume Brisebois40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Kasperi Kapanen6012260122
2Lance Bouma40122Guillaume Brisebois40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Kasperi KapanenLance Bouma60122
2Peter Cehlarik40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
160122
2Guillaume Brisebois40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Kasperi KapanenLance Bouma
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Kasperi KapanenLance Bouma
Extra Forwards
Normal PowerPlayPenalty Kill
, Cam Darcy, Gabriel Gagne, Cam DarcyGabriel Gagne
Extra Defensemen
Normal PowerPlayPenalty Kill
, Brenden Kichton, Guillaume BriseboisBrenden Kichton, Guillaume Brisebois
Penalty Shots
Kasperi Kapanen, Lance Bouma, Peter Cehlarik, ,
Goalie
#1 : , #2 :


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals301010012630-410001000981201000011722-530.50026447000681181358141606639664231353834459666.67%7528.57%035478844.92%32474043.78%490110144.50%1015627924383783387
2Americans1100000012840000000000011000000128421.0001217290068118135849606639664234014610100.00%4175.00%035478844.92%32474043.78%490110144.50%1015627924383783387
3Barracuda201010001317-4201010001317-40000000000020.500132033006811813589260663966423853423388225.00%5420.00%035478844.92%32474043.78%490110144.50%1015627924383783387
4Bears10001000761100010007610000000000021.00071219006811813584860663966423421619103133.33%3166.67%035478844.92%32474043.78%490110144.50%1015627924383783387
5Checkers210001002015510000100910-111000000115630.7502034540068118135892606639664239231102866100.00%5260.00%035478844.92%32474043.78%490110144.50%1015627924383783387
6Comets53200000333213210000017161211000001616060.60033548700681181358198606639664231404625118171058.82%10370.00%035478844.92%32474043.78%490110144.50%1015627924383783387
7Condors312000001921-21010000068-2211000001313020.3331932510068118135811760663966423922490758675.00%10460.00%035478844.92%32474043.78%490110144.50%1015627924383783387
8Devils11000000954000000000001100000095421.0009142300681181358416066396642344232156583.33%110.00%035478844.92%32474043.78%490110144.50%1015627924383783387
9Falcons100010001110110001000111010000000000021.000111526006811813584360663966423501335833100.00%5260.00%035478844.92%32474043.78%490110144.50%1015627924383783387
10Griffins211000001217-51100000096310100000311-820.500122032006811813587260663966423802727374125.00%6516.67%035478844.92%32474043.78%490110144.50%1015627924383783387
11Gulls10000010871100000108710000000000021.0008122000681181358396066396642337111422100.00%2150.00%035478844.92%32474043.78%490110144.50%1015627924383783387
12Marlies10100000810-20000000000010100000810-200.0008152300681181358446066396642332104163133.33%220.00%035478844.92%32474043.78%490110144.50%1015627924383783387
13Moose11000000761000000000001100000076121.0007132000681181358446066396642338157203133.33%110.00%035478844.92%32474043.78%490110144.50%1015627924383783387
14Penguins1010000027-51010000027-50000000000000.00023500681181358446066396642336122118300.00%3166.67%035478844.92%32474043.78%490110144.50%1015627924383783387
15Phantoms1100000011921100000011920000000000021.000111829006811813585260663966423501421922100.00%10100.00%035478844.92%32474043.78%490110144.50%1015627924383783387
16Pirates11000000651000000000001100000065121.000610160068118135840606639664233184212150.00%220.00%035478844.92%32474043.78%490110144.50%1015627924383783387
17Rampage321000002520532100000252050000000000040.66725426700681181358139606639664231386041468562.50%13653.85%135478844.92%32474043.78%490110144.50%1015627924383783387
18Reign202000001114-300000000000202000001114-300.0001120310068118135810160663966423772727555360.00%6266.67%035478844.92%32474043.78%490110144.50%1015627924383783387
19Stars21000100131211000010067-11100000075230.75013223500681181358786066396642369202318450.00%110.00%035478844.92%32474043.78%490110144.50%1015627924383783387
Total4519180421132632512310604210171158132291200001155167-12510.5673265378631068118135819266066396642317406074908241307053.85%1196148.74%235478844.92%32474043.78%490110144.50%1015627924383783387
21Wild413000002224-2211000001310320200000914-520.250223860106811813581596066396642314752357211545.45%15940.00%135478844.92%32474043.78%490110144.50%1015627924383783387
22Wolf Pack10100000410-60000000000010100000410-600.00048120068118135837606639664233761314100.00%4325.00%035478844.92%32474043.78%490110144.50%1015627924383783387
23Wolves330000002517833000000251780000000000061.000254368006811813581246066396642313867376011654.55%6266.67%035478844.92%32474043.78%490110144.50%1015627924383783387
24Wolves312000002223-100000000000312000002223-120.33322315300681181358132606639664231103912467228.57%7357.14%035478844.92%32474043.78%490110144.50%1015627924383783387
_Since Last GM Reset4519180421132632512310604210171158132291200001155167-12510.5673265378631068118135819266066396642317406074908241307053.85%1196148.74%235478844.92%32474043.78%490110144.50%1015627924383783387
_Vs Conference34131503111240244-419950311014212616154100000198118-20360.5292403936331068118135814356066396642312984584026531005353.00%934749.46%235478844.92%32474043.78%490110144.50%1015627924383783387
_Vs Division1781000000117124-7854000005558-3936000006266-4160.4711171843010068118135872260663966423591194226362492653.06%451957.78%035478844.92%32474043.78%490110144.50%1015627924383783387

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
4551W13265378631926174060749082410
All Games
GPWLOTWOTL SOWSOLGFGA
4519184211326325
Home Games
GPWLOTWOTL SOWSOLGFGA
231064210171158
Visitor Games
GPWLOTWOTL SOWSOLGFGA
229120001155167
Last 10 Games
WLOTWOTL SOWSOL
720100
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
1307053.85%1196148.74%2
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
60663966423681181358
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
35478844.92%32474043.78%490110144.50%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
1015627924383783387


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
3 - 2018-10-0416Comets5Heat3LBoxScore
5 - 2018-10-0632Wolves3Heat5WBoxScore
7 - 2018-10-0849Heat8Comets6WBoxScore
8 - 2018-10-0956Heat2Wild5LBoxScore
9 - 2018-10-1070Heat6Admirals10LBoxScore
12 - 2018-10-1387Condors8Heat6LBoxScore
13 - 2018-10-1497Heat6Wolves8LBoxScore
16 - 2018-10-17117Rampage7Heat5LBoxScore
17 - 2018-10-18124Heat7Reign9LBoxScore
20 - 2018-10-21147Wild5Heat4LBoxScore
23 - 2018-10-24166Comets6Heat8WBoxScore
26 - 2018-10-27187Heat4Reign5LBoxScore
27 - 2018-10-28199Barracuda10Heat5LBoxScore
30 - 2018-10-31219Gulls7Heat8WXXBoxScore
32 - 2018-11-02228Heat8Condors4WBoxScore
34 - 2018-11-04247Heat8Comets10LBoxScore
36 - 2018-11-06258Heat8Wolves9LBoxScore
37 - 2018-11-07269Comets5Heat6WBoxScore
40 - 2018-11-10288Phantoms9Heat11WBoxScore
44 - 2018-11-14315Griffins6Heat9WBoxScore
46 - 2018-11-16327Heat7Moose6WBoxScore
50 - 2018-11-20346Rampage8Heat10WBoxScore
52 - 2018-11-22366Heat11Admirals12LXXBoxScore
54 - 2018-11-24378Rampage5Heat10WBoxScore
58 - 2018-11-28402Heat3Griffins11LBoxScore
59 - 2018-11-29412Falcons10Heat11WXBoxScore
62 - 2018-12-02432Heat8Marlies10LBoxScore
64 - 2018-12-04444Wolves10Heat13WBoxScore
66 - 2018-12-06467Heat12Americans8WBoxScore
67 - 2018-12-07474Admirals8Heat9WXBoxScore
70 - 2018-12-10497Heat5Condors9LBoxScore
72 - 2018-12-12504Bears6Heat7WXBoxScore
75 - 2018-12-15530Stars7Heat6LXBoxScore
77 - 2018-12-17545Heat4Wolf Pack10LBoxScore
80 - 2018-12-20562Wolves4Heat7WBoxScore
83 - 2018-12-23577Heat9Devils5WBoxScore
85 - 2018-12-25592Penguins7Heat2LBoxScore
87 - 2018-12-27601Heat6Pirates5WBoxScore
89 - 2018-12-29620Heat7Stars5WBoxScore
90 - 2018-12-30629Barracuda7Heat8WXBoxScore
93 - 2019-01-02654Checkers10Heat9LXBoxScore
95 - 2019-01-04667Heat11Checkers5WBoxScore
98 - 2019-01-07686Wild5Heat9WBoxScore
100 - 2019-01-09695Heat7Wild9LBoxScore
102 - 2019-01-11713Heat8Wolves6WBoxScore
104 - 2019-01-13721Crunch-Heat-
107 - 2019-01-16740Heat-Griffins-
108 - 2019-01-17753Sound Tigers-Heat-
112 - 2019-01-21778Bruins-Heat-
114 - 2019-01-23789Heat-Wild-
116 - 2019-01-25809IceHogs-Heat-
117 - 2019-01-26813Heat-Barracuda-
121 - 2019-01-30841Reign-Heat-
125 - 2019-02-03865Heat-Stars-
126 - 2019-02-04876Senators-Heat-
129 - 2019-02-07901Gulls-Heat-
131 - 2019-02-09913Heat-Rampage-
134 - 2019-02-12932Reign-Heat-
136 - 2019-02-14947Heat-IceCaps-
138 - 2019-02-16963Monsters-Heat-
139 - 2019-02-17971Heat-IceHogs-
142 - 2019-02-20991Heat-Falcons-
143 - 2019-02-21997Wolves-Heat-
Trade Deadline --- Trades can’t be done after this day is simulated!
146 - 2019-02-241022Heat-Falcons-
147 - 2019-02-251027IceHogs-Heat-
149 - 2019-02-271046Heat-Rampage-
151 - 2019-03-011056Heat-Gulls-
152 - 2019-03-021064Americans-Heat-
155 - 2019-03-051088Wolves-Heat-
157 - 2019-03-071101Heat-Reign-
160 - 2019-03-101119Condors-Heat-
161 - 2019-03-111127Heat-Wolves-
163 - 2019-03-131135Heat-Monsters-
165 - 2019-03-151150Heat-Bruins-
167 - 2019-03-171160Condors-Heat-
168 - 2019-03-181165Heat-Monsters-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
15 0 - 0.00% 0$0$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
814,281$ 1,305,000$ 1,215,000$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 801,705$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 69 7,632$ 526,608$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
20184519180421132632512310604210171158132291200001155167-12513265378631068118135819266066396642317406074908241307053.85%1196148.74%235478844.92%32474043.78%490110144.50%1015627924383783387
Total Regular Season4519180421132632512310604210171158132291200001155167-12513265378631068118135819266066396642317406074908241307053.85%1196148.74%235478844.92%32474043.78%490110144.50%1015627924383783387