Americans

GP: 43 | W: 15 | L: 25 | OTL: 3 | P: 33
GF: 238 | GA: 301 | PP%: 32.14% | PK%: 48.28%
GM : Brian Cohn | Morale : 50 | Team Overall : 57
Next Games #715 vs Condors
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Nick LappinX100.006865767565838866505869636648486850630
2Joakim NordstromX100.007944977469579658435756742566676450620
3Andrew PoturalskiX100.007468896268849062785861645844446550610
4Dennis RasmussenXX100.007644906977537360526056772559596450610
5Kalle KossilaXXX100.006942997564538060666059512545456150580
6Aleksi Saarela (R)X100.007668956668585861765265646244446450580
7Trevor Moore (R)X100.007062896662747858505656615344446150580
8Brett SutterX100.007373746373555559745658625544446050560
9Conor Garland (R)X100.006457796757666957505851574844445850550
10Clark Bishop (R)X100.007570866170667054685647624544445750550
Scratches
1Ryan PennyX100.007470846470545553505546614444445550540
2Vaclav Karabacek (R)XX100.007871946071555653505051634844445750540
3Alexis LoiseauX100.00646670625147555464545158504444150520
4Nikita Korostelev (R)X100.007771926571505149504548624644445450520
5Cameron Hughes (R)X100.007064846564515251645444594244445450520
6Ashton SautnerX100.007871936471667147253741623944445350570
7Nelson Nogier (R)X100.007672866572495145253539603744445050530
TEAM AVERAGE100.00736387666760685655535362454647565057
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
Scratches
1Sam Brittain100.00555063895554606357583044445750580
2Peter Budaj100.0051658173465150564848306869525056X0
TEAM AVERAGE100.0053587281515355605353305657555057
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Nick LappinAmericans (Buf)RW43365086-44462074612017212617.91%3397522.681081816610223534037.04%547327031.7601112361
2Joakim NordstromAmericans (Buf)C43384280-4110105586169519822.49%3799723.20512176571238590346.91%11644535111.6001011532
3Aleksi SaarelaAmericans (Buf)C43203858-2626205873156569912.82%7096422.43000016000002058.11%744837021.2000004201
4Dennis RasmussenAmericans (Buf)C/LW43174158-4733154854116357214.66%4592321.47410148571015234052.94%513136001.2600021013
5Trevor MooreAmericans (Buf)LW43153954-2866405652140638910.71%5697522.68101116000011025.00%43736011.1100323201
6Kalle KossilaAmericans (Buf)C/LW/RW431634501555053136408911.76%1274017.21246646000010062.50%323514001.3500001203
7Andrew PoturalskiAmericans (Buf)C43182947324105899129357013.95%1576817.882243480111210060.00%5651721001.2200101023
8Conor GarlandAmericans (Buf)RW43141832-24210564981275117.28%2274117.24123547000000148.15%271316000.8600110102
9Brett SutterAmericans (Buf)LW4331518-16221047327518494.00%1245710.65000020000130080.00%151410000.7900101000
10Clark BishopAmericans (Buf)C4341014-97533313071713.33%1043710.18000030112270052.46%12298000.6400001000
11Ashton SautnerAmericans (Buf)D1116702915201914857.14%1828325.7500001400018010.00%039000.4900003001
12Nelson NogierAmericans (Buf)D15246-1112101731176811.76%2037525.01011120101212000.00%038000.3200101001
13Ryan PennyAmericans (Buf)LW15314-52020152541412.00%517911.9400003000050045.71%3534100.4500000010
Team Total or Average471187327514-225324170592655128942278714.51%355881918.73253964463983692222911551.38%2143331261271.17028719151318
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Peter BudajAmericans (Buf)43100.9352.492410010154105000.000044200
Team Total or Average43100.9352.492410010154105000.000044200


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Aleksi SaarelaAmericans (Buf)C221997-01-07Yes198 Lbs5 ft11NoNoNo3RFAPro & Farm700,000$0$0$NoLink
Alexis LoiseauAmericans (Buf)C251994-01-11No179 Lbs6 ft1NoNoNo2RFAPro & Farm550,000$0$0$NoLink
Andrew PoturalskiAmericans (Buf)C251994-01-14No181 Lbs5 ft10NoNoNo1RFAPro & Farm875,000$0$0$NoLink
Ashton SautnerAmericans (Buf)D241994-05-27No195 Lbs6 ft1NoNoNo2RFAPro & Farm700,000$0$0$NoLink
Brett SutterAmericans (Buf)LW301988-07-14 7:21:32 PMNo200 Lbs6 ft0NoNoNo1UFAPro & Farm650,000$0$0$NoLink
Cameron HughesAmericans (Buf)C221996-10-09Yes174 Lbs6 ft0NoNoNo3RFAPro & Farm500,000$0$0$NoLink
Clark BishopAmericans (Buf)C221996-03-28Yes194 Lbs6 ft0NoNoNo2RFAPro & Farm500,000$0$0$NoLink
Conor GarlandAmericans (Buf)RW221996-03-10Yes165 Lbs5 ft10NoNoNo2RFAPro & Farm500,000$0$0$NoLink
Dennis RasmussenAmericans (Buf)C/LW281990-07-03No205 Lbs6 ft3NoNoNo3UFAPro & Farm750,000$0$0$NoLink
Joakim NordstromAmericans (Buf)C261992-02-25No189 Lbs6 ft1NoNoNo3RFAPro & Farm1,500,000$0$0$NoLink
Kalle KossilaAmericans (Buf)C/LW/RW251993-04-14No175 Lbs5 ft11NoNoNo1RFAPro & Farm955,000$0$0$NoLink
Nelson NogierAmericans (Buf)D221996-05-26Yes191 Lbs6 ft2NoNoNo2RFAPro & Farm650,000$0$0$NoLink
Nick LappinAmericans (Buf)RW261992-11-01No174 Lbs6 ft1NoNoNo1RFAPro & Farm945,000$0$0$NoLink
Nikita KorostelevAmericans (Buf)RW211997-02-08Yes195 Lbs6 ft1NoNoNo1RFAPro & Farm0$0$NoLink
Peter BudajAmericans (Buf)G351983-07-14 1:21:33 PMNo196 Lbs6 ft1NoYesNo1UFAPro & Farm1,050,000$0$0$NoLink
Ryan PennyAmericans (Buf)LW241994-09-09No192 Lbs6 ft0NoNoNo2RFAPro & Farm575,000$0$0$NoLink
Sam BrittainAmericans (Buf)G261992-05-10No229 Lbs6 ft3NoNoNo1RFAPro & Farm750,000$0$0$NoLink
Trevor MooreAmericans (Buf)LW231995-03-31Yes170 Lbs5 ft10NoNoNo1RFAPro & Farm925,000$0$0$NoLink
Vaclav KarabacekAmericans (Buf)LW/RW221996-05-01Yes199 Lbs6 ft0NoNoNo2RFAPro & Farm800,000$0$0$NoLink
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
1924.74190 Lbs6 ft01.79730,263$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Dennis RasmussenJoakim NordstromNick Lappin40122
2Kalle KossilaAndrew PoturalskiConor Garland30122
3Trevor MooreAleksi Saarela20122
4Brett SutterClark BishopJoakim Nordstrom10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
140122
2Aleksi SaarelaTrevor Moore30122
320122
4Nick LappinDennis Rasmussen10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Dennis RasmussenJoakim NordstromNick Lappin60122
2Kalle KossilaAndrew PoturalskiConor Garland40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
160122
2Aleksi SaarelaTrevor Moore40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Joakim NordstromNick Lappin60122
2Dennis RasmussenAndrew Poturalski40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
160122
240122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Joakim Nordstrom6012260122
2Nick Lappin4012240122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Joakim NordstromNick Lappin60122
2Dennis RasmussenAndrew Poturalski40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
160122
240122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Dennis RasmussenJoakim NordstromNick Lappin
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Dennis RasmussenJoakim NordstromNick Lappin
Extra Forwards
Normal PowerPlayPenalty Kill
, Brett Sutter, Clark Bishop, Brett SutterClark Bishop
Extra Defensemen
Normal PowerPlayPenalty Kill
, , ,
Penalty Shots
Joakim Nordstrom, Nick Lappin, Dennis Rasmussen, Andrew Poturalski, Kalle Kossila
Goalie
#1 : , #2 :


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals1010000056-1000000000001010000056-100.0005712006189871284594745379274214100.00%10100.00%032667648.22%34665352.99%45894148.67%834455939391818405
2Barracuda10100000711-410100000711-40000000000000.00071219006189871334594745379481972022100.00%110.00%032667648.22%34665352.99%45894148.67%834455939391818405
3Bruins30201000716-91010000028-62010100058-320.3337111800618987110345947453791253223779111.11%4325.00%032667648.22%34665352.99%45894148.67%834455939391818405
4Checkers202000001218-6202000001218-60000000000000.00012203200618987159459474537967278264125.00%40100.00%132667648.22%34665352.99%45894148.67%834455939391818405
5Comets11000000927110000009270000000000021.00091322006189871474594745379301022154125.00%10100.00%032667648.22%34665352.99%45894148.67%834455939391818405
6Crunch1010000028-61010000028-60000000000000.0002460061898712645947453794110925000.00%20100.00%032667648.22%34665352.99%45894148.67%834455939391818405
7Devils1000010067-1000000000001000010067-110.5006111700618987134459474537945116722100.00%4175.00%032667648.22%34665352.99%45894148.67%834455939391818405
8Griffins101000001012-200000000000101000001012-200.0001017271061898714845947453794317611000.00%330.00%032667648.22%34665352.99%45894148.67%834455939391818405
9Gulls11000000752110000007520000000000021.000712190061898713745947453792611417300.00%2150.00%032667648.22%34665352.99%45894148.67%834455939391818405
10Heat10100000812-410100000812-40000000000000.000815230061898714045947453794913284125.00%10100.00%032667648.22%34665352.99%45894148.67%834455939391818405
11IceCaps4210000122211210000011082211000001213-150.62522365800618987111545947453791124039702150.00%7442.86%132667648.22%34665352.99%45894148.67%834455939391818405
12Marlies413000002640-141010000069-3312000002031-1120.25026467200618987112845947453791725318757228.57%5340.00%032667648.22%34665352.99%45894148.67%834455939391818405
13Moose321000001719-211000000752211000001014-440.66717304700618987110145947453791343462476116.67%6433.33%032667648.22%34665352.99%45894148.67%834455939391818405
14Penguins31200000819-1121100000510-51010000039-620.33381624006189871984594745379113424555600.00%10550.00%032667648.22%34665352.99%45894148.67%834455939391818405
15Phantoms422000002624222000000179820200000915-640.500264672006189871136459474537916751246910550.00%7357.14%132667648.22%34665352.99%45894148.67%834455939391818405
16Pirates211000001513221100000151320000000000020.500152742006189871784594745379792138257457.14%9366.67%132667648.22%34665352.99%45894148.67%834455939391818405
17Rampage1010000036-3000000000001010000036-300.00036900618987141459474537940136153133.33%330.00%032667648.22%34665352.99%45894148.67%834455939391818405
18Senators41300000920-1120200000515-102110000045-120.2509162500618987111845947453791143560819222.22%10550.00%032667648.22%34665352.99%45894148.67%834455939391818405
19Sound Tigers1010000059-4000000000001010000059-400.000591400618987133459474537945216511100.00%3233.33%032667648.22%34665352.99%45894148.67%834455939391818405
20Stars1000010089-11000010089-10000000000010.500814220061898713845947453794218921000.00%220.00%032667648.22%34665352.99%45894148.67%834455939391818405
Total43142501201238301-632391200101137159-222051301100101142-41330.384238413651106189871147745947453791639529400720842732.14%874548.28%432667648.22%34665352.99%45894148.67%834455939391818405
22Wolf Pack11000000972000000000001100000097221.0009172600618987147459474537936150911100.00%000.00%032667648.22%34665352.99%45894148.67%834455939391818405
23Wolves11000000981110000009810000000000021.000915240061898714645947453794216211200.00%110.00%032667648.22%34665352.99%45894148.67%834455939391818405
24Wolves1010000089-11010000089-10000000000000.00081321006189871434594745379421621711100.00%110.00%032667648.22%34665352.99%45894148.67%834455939391818405
_Since Last GM Reset43142501201238301-632391200101137159-222051301100101142-41330.384238413651106189871147745947453791639529400720842732.14%874548.28%432667648.22%34665352.99%45894148.67%834455939391818405
_Vs Conference33111901101164221-5716690000181103-22175100110083118-35260.394164289453006189871107645947453791250392338571642132.81%713353.52%432667648.22%34665352.99%45894148.67%834455939391818405
_Vs Division19490100191130-39914000014061-211035010005169-18110.289911572481061898716164594745379686208193364341029.41%402147.50%232667648.22%34665352.99%45894148.67%834455939391818405

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
4333L12384136511477163952940072010
All Games
GPWLOTWOTL SOWSOLGFGA
4314251201238301
Home Games
GPWLOTWOTL SOWSOLGFGA
239120101137159
Visitor Games
GPWLOTWOTL SOWSOLGFGA
205131100101142
Last 10 Games
WLOTWOTL SOWSOL
550000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
842732.14%874548.28%4
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
45947453796189871
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
32667648.22%34665352.99%45894148.67%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
834455939391818405


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
2 - 2018-10-038Americans3Senators1WBoxScore
4 - 2018-10-0523Pirates4Americans3LBoxScore
6 - 2018-10-0743Penguins3Americans4WBoxScore
7 - 2018-10-0852Americans3Bruins2WXBoxScore
9 - 2018-10-1069Americans5Phantoms7LBoxScore
10 - 2018-10-1178Americans1Senators4LBoxScore
12 - 2018-10-1392IceCaps3Americans2LXXBoxScore
14 - 2018-10-15103Americans2Bruins6LBoxScore
17 - 2018-10-18121Bruins8Americans2LBoxScore
19 - 2018-10-20139Americans4Moose11LBoxScore
20 - 2018-10-21145Americans8Marlies7WBoxScore
21 - 2018-10-22155Marlies9Americans6LBoxScore
25 - 2018-10-26180Crunch8Americans2LBoxScore
28 - 2018-10-29204Americans7Marlies11LBoxScore
29 - 2018-10-30213Checkers6Americans5LBoxScore
32 - 2018-11-02231Americans5Sound Tigers9LBoxScore
34 - 2018-11-04243Checkers12Americans7LBoxScore
37 - 2018-11-07267Stars9Americans8LXBoxScore
40 - 2018-11-10291Moose5Americans7WBoxScore
42 - 2018-11-12302Americans5Admirals6LBoxScore
45 - 2018-11-15319Comets2Americans9WBoxScore
49 - 2018-11-19344Wolves9Americans8LBoxScore
52 - 2018-11-22359Americans6Moose3WBoxScore
54 - 2018-11-24377Senators8Americans2LBoxScore
58 - 2018-11-28404Phantoms2Americans8WBoxScore
60 - 2018-11-30420Americans6Devils7LXBoxScore
62 - 2018-12-02431Americans3Rampage6LBoxScore
63 - 2018-12-03443Penguins7Americans1LBoxScore
66 - 2018-12-06467Heat12Americans8LBoxScore
68 - 2018-12-08484Americans3Penguins9LBoxScore
71 - 2018-12-11499Senators7Americans3LBoxScore
72 - 2018-12-12512Americans9Wolf Pack7WBoxScore
75 - 2018-12-15529Gulls5Americans7WBoxScore
80 - 2018-12-20560Barracuda11Americans7LBoxScore
82 - 2018-12-22575Americans10Griffins12LBoxScore
85 - 2018-12-25591Pirates9Americans12WBoxScore
89 - 2018-12-29621Phantoms7Americans9WBoxScore
91 - 2018-12-31635Americans4Phantoms8LBoxScore
93 - 2019-01-02652Wolves8Americans9WBoxScore
95 - 2019-01-04665Americans7IceCaps5WBoxScore
97 - 2019-01-06680Americans5Marlies13LBoxScore
98 - 2019-01-07685IceCaps5Americans8WBoxScore
101 - 2019-01-10703Americans5IceCaps8LBoxScore
103 - 2019-01-12715Condors-Americans-
105 - 2019-01-14733Americans-Crunch-
108 - 2019-01-17746Bruins-Americans-
110 - 2019-01-19767Americans-Bears-
111 - 2019-01-20775Devils-Americans-
114 - 2019-01-23793Americans-Senators-
116 - 2019-01-25807Bruins-Americans-
119 - 2019-01-28828Americans-Senators-
121 - 2019-01-30839Crunch-Americans-
123 - 2019-02-01857Americans-Rampage-
125 - 2019-02-03868Devils-Americans-
129 - 2019-02-07900Wolf Pack-Americans-
131 - 2019-02-09917Americans-Bruins-
133 - 2019-02-11931Pirates-Americans-
136 - 2019-02-14951Americans-Sound Tigers-
138 - 2019-02-16962IceCaps-Americans-
140 - 2019-02-18975Americans-Reign-
142 - 2019-02-20993Sound Tigers-Americans-
143 - 2019-02-211001Americans-Bruins-
Trade Deadline --- Trades can’t be done after this day is simulated!
146 - 2019-02-241023Americans-Bears-
147 - 2019-02-251025Penguins-Americans-
148 - 2019-02-261038Americans-IceHogs-
151 - 2019-03-011057Marlies-Americans-
152 - 2019-03-021064Americans-Heat-
154 - 2019-03-041086Falcons-Americans-
155 - 2019-03-051091Americans-Checkers-
156 - 2019-03-061098Americans-Wild-
160 - 2019-03-101118Bears-Americans-
162 - 2019-03-121129Americans-Pirates-
164 - 2019-03-141148Monsters-Americans-
167 - 2019-03-171161Americans-Wolf Pack-
168 - 2019-03-181164Americans-Reign-
169 - 2019-03-191171Americans-Pirates-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
15 0 - 0.00% 0$0$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
812,884$ 1,387,500$ 1,387,500$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 808,236$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 69 8,114$ 559,866$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
201843142501201238301-632391200101137159-222051301100101142-4133238413651106189871147745947453791639529400720842732.14%874548.28%432667648.22%34665352.99%45894148.67%834455939391818405
Total Regular Season43142501201238301-632391200101137159-222051301100101142-4133238413651106189871147745947453791639529400720842732.14%874548.28%432667648.22%34665352.99%45894148.67%834455939391818405