Americans

GP: 73 | W: 32 | L: 33 | OTL: 8 | P: 72
GF: 449 | GA: 492 | PP%: 41.67% | PK%: 45.03%
GM : Brian Cohn | Morale : 50 | Team Overall : 56
Next Games #1161 vs Wolf Pack
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Joakim NordstromX98.007944977469579658435756742566676450620
2Andrew PoturalskiX100.007468896268849062785861645844446550610
3Dennis RasmussenXX100.007644906977537360526056772559596450610
4Kalle KossilaXXX100.006942997564538060666059512545456150580
5Trevor Moore (R)X100.007062896662747858505656615344446150580
6Brett SutterX100.007373746373555559745658625544446050560
7Clark Bishop (R)X100.007570866170667054685647624544445750550
8Ryan PennyX100.007470846470545553505546614444445550540
9Vaclav Karabacek (R)XX100.007871946071555653505051634844445750540
10Alexis LoiseauX100.00646670625147555464545158504444150520
11Nikita Korostelev (R)X100.007771926571505149504548624644445450520
12Ashton SautnerX100.007871936471667147253741623944445350570
13Nelson Nogier (R)X100.007672866572495145253539603744445050530
Scratches
1Aleksi Saarela (R)X71.207668956668585861765265646244446450580
2Conor Garland (R)X100.006457796757666957505851574844445850550
3Cameron Hughes (R)X100.007064846564515251645444594244445450520
TEAM AVERAGE98.08736388666759665555535262444646555056
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Sam Brittain100.00555063895554606357583044445750580
2Peter Budaj100.0051658173465150564848306869525056X0
Scratches
TEAM AVERAGE100.0053587281515355605353305657555057
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Joakim NordstromAmericans (Buf)C738788175-1015159314440412324121.53%66170123.301821393210812311974647.51%192611159162.060301212115
2Dennis RasmussenAmericans (Buf)C/LW734695141-144325819734010018513.53%75159021.7992534221072027314151.96%1027863021.7702032637
3Kalle KossilaAmericans (Buf)C/LW/RW73437011318202067692988420614.43%19126917.38714211478000022166.00%508421031.7800112736
4Andrew PoturalskiAmericans (Buf)C734756103204125901332728117617.28%31131317.991151622820111264160.26%10045632031.5700122188
5Aleksi SaarelaAmericans (Buf)C69286997-1960508311526110617910.73%104149121.61000017000003058.28%1638260031.3000118303
6Trevor MooreAmericans (Buf)LW73256893-12774587932851011558.77%92163222.37101117000013037.50%86268011.1400333302
7Nick LappinSabresRW44375087-42512575642067412917.96%3499422.601081816620223544035.59%597427031.7501212361
8Conor GarlandAmericans (Buf)RW4414193304210575084275116.67%2274917.03123547000000148.15%271318000.8800110102
9Brett SutterAmericans (Buf)LW7332023-23351551409624673.12%176008.23000020000130070.00%201511000.7700102000
10Clark BishopAmericans (Buf)C7351419-177539433882713.16%156108.36000030112520057.20%2571112000.6200001000
11Ashton SautnerAmericans (Buf)D1116702915201914857.14%1828325.7500001400018010.00%039000.4900003001
12Nelson NogierAmericans (Buf)D15246-1112101731176811.76%2037525.01011120101212000.00%038000.3200101001
13Ryan PennyAmericans (Buf)LW15314-52020152541412.00%517911.9400003000050045.71%3534100.4500000010
Team Total or Average709341560901-1154342607809132340746144314.57%5181279018.045776133113567461027307241152.45%36515953922211.4106111328363236
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Peter BudajAmericans (Buf)43100.9352.492410010154105000.000044200
Team Total or Average43100.9352.492410010154105000.000044200


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Aleksi Saarela (Out of Payroll)Americans (Buf)C221997-01-07Yes198 Lbs5 ft11NoNoNo3RFAPro & Farm700,000$0$0$YesLink
Alexis LoiseauAmericans (Buf)C251994-01-11No179 Lbs6 ft1NoNoNo2RFAPro & Farm550,000$0$0$NoLink
Andrew PoturalskiAmericans (Buf)C251994-01-14No181 Lbs5 ft10NoNoNo1RFAPro & Farm875,000$0$0$NoLink
Ashton SautnerAmericans (Buf)D241994-05-27No195 Lbs6 ft1NoNoNo2RFAPro & Farm700,000$0$0$NoLink
Brett SutterAmericans (Buf)LW301988-07-14 7:21:32 PMNo200 Lbs6 ft0NoNoNo1UFAPro & Farm650,000$0$0$NoLink
Cameron HughesAmericans (Buf)C221996-10-09Yes174 Lbs6 ft0NoNoNo3RFAPro & Farm500,000$0$0$NoLink
Clark BishopAmericans (Buf)C221996-03-28Yes194 Lbs6 ft0NoNoNo2RFAPro & Farm500,000$0$0$NoLink
Conor GarlandAmericans (Buf)RW231996-03-10Yes165 Lbs5 ft10NoNoNo2RFAPro & Farm500,000$0$0$NoLink
Dennis RasmussenAmericans (Buf)C/LW281990-07-03No205 Lbs6 ft3NoNoNo3UFAPro & Farm750,000$0$0$NoLink
Joakim NordstromAmericans (Buf)C271992-02-25No189 Lbs6 ft1NoNoNo3RFAPro & Farm1,500,000$0$0$NoLink
Kalle KossilaAmericans (Buf)C/LW/RW251993-04-14No175 Lbs5 ft11NoNoNo1RFAPro & Farm955,000$0$0$NoLink
Nelson NogierAmericans (Buf)D221996-05-26Yes191 Lbs6 ft2NoNoNo2RFAPro & Farm650,000$0$0$NoLink
Nikita KorostelevAmericans (Buf)RW221997-02-08Yes195 Lbs6 ft1NoNoNo1RFAPro & Farm0$0$NoLink
Peter BudajAmericans (Buf)G351983-07-14 1:21:33 PMNo196 Lbs6 ft1NoYesNo1UFAPro & Farm1,050,000$0$0$NoLink
Ryan PennyAmericans (Buf)LW241994-09-09No192 Lbs6 ft0NoNoNo2RFAPro & Farm575,000$0$0$NoLink
Sam BrittainAmericans (Buf)G261992-05-10No229 Lbs6 ft3NoNoNo1RFAPro & Farm750,000$0$0$NoLink
Trevor MooreAmericans (Buf)LW231995-03-31Yes170 Lbs5 ft10NoNoNo1RFAPro & Farm925,000$0$0$NoLink
Vaclav KarabacekAmericans (Buf)LW/RW221996-05-01Yes199 Lbs6 ft0NoNoNo2RFAPro & Farm800,000$0$0$NoLink
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
1824.83190 Lbs6 ft01.83718,333$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Dennis RasmussenJoakim Nordstrom40122
2Kalle KossilaAndrew Poturalski30122
3Trevor Moore20122
4Brett SutterClark BishopJoakim Nordstrom10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
140122
2Trevor Moore30122
320122
4Dennis Rasmussen10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Dennis RasmussenJoakim Nordstrom60122
2Kalle KossilaAndrew Poturalski40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
160122
2Trevor Moore40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Joakim Nordstrom60122
2Dennis RasmussenAndrew Poturalski40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
160122
240122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Joakim Nordstrom6012260122
24012240122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Joakim Nordstrom60122
2Dennis RasmussenAndrew Poturalski40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
160122
240122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Dennis RasmussenJoakim Nordstrom
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Dennis RasmussenJoakim Nordstrom
Extra Forwards
Normal PowerPlayPenalty Kill
, Brett Sutter, Clark Bishop, Brett SutterClark Bishop
Extra Defensemen
Normal PowerPlayPenalty Kill
, , ,
Penalty Shots
Joakim Nordstrom, , Dennis Rasmussen, Andrew Poturalski, Kalle Kossila
Goalie
#1 : , #2 :


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals1010000056-1000000000001010000056-100.00057120011017316422884394298723274214100.00%10100.00%0646130549.50%570109052.29%797166048.01%151089015746571331648
2Barracuda10100000711-410100000711-40000000000000.000712190011017316423384394298723481972022100.00%110.00%0646130549.50%570109052.29%797166048.01%151089015746571331648
3Bears321000001916311000000853211000001111040.667193049001101731642130843942987239630144111654.55%7528.57%0646130549.50%570109052.29%797166048.01%151089015746571331648
4Bruins705011002240-1830200100821-13403010001419-530.21422335500110173164227084394298723267737614818211.11%191331.58%0646130549.50%570109052.29%797166048.01%151089015746571331648
5Checkers302001002128-7202000001218-610000100910-110.167213758001101731642102843942987231083212355240.00%6183.33%1646130549.50%570109052.29%797166048.01%151089015746571331648
6Comets11000000927110000009270000000000021.000913220011017316424784394298723301022154125.00%10100.00%0646130549.50%570109052.29%797166048.01%151089015746571331648
7Condors1100000011651100000011650000000000021.00011203100110173164254843942987233510121722100.00%110.00%0646130549.50%570109052.29%797166048.01%151089015746571331648
8Crunch302010001023-1320101000712-510100000311-820.333101727001101731642110843942987231253338513133.33%9544.44%0646130549.50%570109052.29%797166048.01%151089015746571331648
9Devils311001001818021100000121111000010067-130.50018325000110173164211384394298723108348348562.50%5260.00%0646130549.50%570109052.29%797166048.01%151089015746571331648
10Falcons1100000010551100000010550000000000021.0001018280011017316424884394298723261111134375.00%3233.33%1646130549.50%570109052.29%797166048.01%151089015746571331648
11Griffins101000001012-200000000000101000001012-200.00010172710110173164248843942987234317611000.00%330.00%0646130549.50%570109052.29%797166048.01%151089015746571331648
12Gulls11000000752110000007520000000000021.0007121900110173164237843942987232611417300.00%2150.00%0646130549.50%570109052.29%797166048.01%151089015746571331648
13Heat201000011621-510100000812-41000000189-110.2501629450011017316428884394298723852714216350.00%7357.14%0646130549.50%570109052.29%797166048.01%151089015746571331648
14IceCaps531000013222103200000120911211000001213-170.700325082001101731642162843942987231485754906583.33%7442.86%1646130549.50%570109052.29%797166048.01%151089015746571331648
15IceHogs1000010056-1000000000001000010056-110.500581300110173164243843942987233825615200.00%3166.67%0646130549.50%570109052.29%797166048.01%151089015746571331648
16Marlies523000003847-92110000018162312000002031-1140.40038641020011017316421838439429872320655268511545.45%9455.56%0646130549.50%570109052.29%797166048.01%151089015746571331648
17Monsters1100000010821100000010820000000000021.000101828001101731642508439429872334180133133.33%000.00%0646130549.50%570109052.29%797166048.01%151089015746571331648
18Moose321000001719-211000000752211000001014-440.667173047001101731642101843942987231343462476116.67%6433.33%0646130549.50%570109052.29%797166048.01%151089015746571331648
19Penguins413000001129-1831200000820-121010000039-620.25011213200110173164213884394298723169525771800.00%11554.55%0646130549.50%570109052.29%797166048.01%151089015746571331648
20Phantoms422000002624222000000179820200000915-640.5002646720011017316421368439429872316751246910550.00%7357.14%1646130549.50%570109052.29%797166048.01%151089015746571331648
21Pirates431000003225732100000231941100000096360.7503256880011017316421728439429872314752524410550.00%16662.50%1646130549.50%570109052.29%797166048.01%151089015746571331648
22Rampage211000001213-100000000000211000001213-120.500122032001101731642838439429872379296264250.00%330.00%0646130549.50%570109052.29%797166048.01%151089015746571331648
23Reign11000000752000000000001100000075221.00071219001101731642428439429872338152103266.67%110.00%0646130549.50%570109052.29%797166048.01%151089015746571331648
24Senators633000002228-620200000515-10431000001713460.50022375900110173164220984394298723183608411514428.57%12650.00%0646130549.50%570109052.29%797166048.01%151089015746571331648
25Sound Tigers312000002026-61010000059-4211000001517-220.333203353001101731642108843942987231434512344375.00%6516.67%0646130549.50%570109052.29%797166048.01%151089015746571331648
26Stars1000010089-11000010089-10000000000010.5008142200110173164238843942987234218921000.00%220.00%0646130549.50%570109052.29%797166048.01%151089015746571331648
Total73303302503449492-4338181601201248250-235121701302201242-41720.4934497601209101101731642278784394298723274590262611351566541.67%1518345.03%5646130549.50%570109052.29%797166048.01%151089015746571331648
28Wild1000000178-1000000000001000000178-110.500712190011017316423384394298723392001222100.00%000.00%0646130549.50%570109052.29%797166048.01%151089015746571331648
29Wolf Pack22000000201371100000011651100000097241.000203454001101731642928439429872370282183266.67%10100.00%0646130549.50%570109052.29%797166048.01%151089015746571331648
30Wolves11000000981110000009810000000000021.0009152400110173164246843942987234216211200.00%110.00%0646130549.50%570109052.29%797166048.01%151089015746571331648
31Wolves1010000089-11010000089-10000000000000.000813210011017316424384394298723421621711100.00%110.00%0646130549.50%570109052.29%797166048.01%151089015746571331648
_Since Last GM Reset73303302503449492-4338181601201248250-235121701302201242-41720.4934497601209101101731642278784394298723274590262611351566541.67%1518345.03%5646130549.50%570109052.29%797166048.01%151089015746571331648
_Vs Conference55222702301308358-5028121301101161175-1427101401200147183-36520.47330852082800110173164220268439429872320716365218821174639.32%1216347.93%4646130549.50%570109052.29%797166048.01%151089015746571331648
_Vs Division3181201101166197-311535001018192-1116570100085105-20200.3231662744401011017316421154843942987231119347336544622235.48%754145.33%2646130549.50%570109052.29%797166048.01%151089015746571331648

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
7372W3449760120927872745902626113510
All Games
GPWLOTWOTL SOWSOLGFGA
7330332503449492
Home Games
GPWLOTWOTL SOWSOLGFGA
3818161201248250
Visitor Games
GPWLOTWOTL SOWSOLGFGA
3512171302201242
Last 10 Games
WLOTWOTL SOWSOL
510202
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
1566541.67%1518345.03%5
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
843942987231101731642
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
646130549.50%570109052.29%797166048.01%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
151089015746571331648


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
2 - 2018-10-038Americans3Senators1WBoxScore
4 - 2018-10-0523Pirates4Americans3LBoxScore
6 - 2018-10-0743Penguins3Americans4WBoxScore
7 - 2018-10-0852Americans3Bruins2WXBoxScore
9 - 2018-10-1069Americans5Phantoms7LBoxScore
10 - 2018-10-1178Americans1Senators4LBoxScore
12 - 2018-10-1392IceCaps3Americans2LXXBoxScore
14 - 2018-10-15103Americans2Bruins6LBoxScore
17 - 2018-10-18121Bruins8Americans2LBoxScore
19 - 2018-10-20139Americans4Moose11LBoxScore
20 - 2018-10-21145Americans8Marlies7WBoxScore
21 - 2018-10-22155Marlies9Americans6LBoxScore
25 - 2018-10-26180Crunch8Americans2LBoxScore
28 - 2018-10-29204Americans7Marlies11LBoxScore
29 - 2018-10-30213Checkers6Americans5LBoxScore
32 - 2018-11-02231Americans5Sound Tigers9LBoxScore
34 - 2018-11-04243Checkers12Americans7LBoxScore
37 - 2018-11-07267Stars9Americans8LXBoxScore
40 - 2018-11-10291Moose5Americans7WBoxScore
42 - 2018-11-12302Americans5Admirals6LBoxScore
45 - 2018-11-15319Comets2Americans9WBoxScore
49 - 2018-11-19344Wolves9Americans8LBoxScore
52 - 2018-11-22359Americans6Moose3WBoxScore
54 - 2018-11-24377Senators8Americans2LBoxScore
58 - 2018-11-28404Phantoms2Americans8WBoxScore
60 - 2018-11-30420Americans6Devils7LXBoxScore
62 - 2018-12-02431Americans3Rampage6LBoxScore
63 - 2018-12-03443Penguins7Americans1LBoxScore
66 - 2018-12-06467Heat12Americans8LBoxScore
68 - 2018-12-08484Americans3Penguins9LBoxScore
71 - 2018-12-11499Senators7Americans3LBoxScore
72 - 2018-12-12512Americans9Wolf Pack7WBoxScore
75 - 2018-12-15529Gulls5Americans7WBoxScore
80 - 2018-12-20560Barracuda11Americans7LBoxScore
82 - 2018-12-22575Americans10Griffins12LBoxScore
85 - 2018-12-25591Pirates9Americans12WBoxScore
89 - 2018-12-29621Phantoms7Americans9WBoxScore
91 - 2018-12-31635Americans4Phantoms8LBoxScore
93 - 2019-01-02652Wolves8Americans9WBoxScore
95 - 2019-01-04665Americans7IceCaps5WBoxScore
97 - 2019-01-06680Americans5Marlies13LBoxScore
98 - 2019-01-07685IceCaps5Americans8WBoxScore
101 - 2019-01-10703Americans5IceCaps8LBoxScore
103 - 2019-01-12715Condors6Americans11WBoxScore
105 - 2019-01-14733Americans3Crunch11LBoxScore
108 - 2019-01-17746Bruins6Americans5LXBoxScore
110 - 2019-01-19767Americans3Bears4LBoxScore
111 - 2019-01-20775Devils8Americans7LBoxScore
114 - 2019-01-23793Americans7Senators3WBoxScore
116 - 2019-01-25807Bruins7Americans1LBoxScore
119 - 2019-01-28828Americans6Senators5WBoxScore
121 - 2019-01-30839Crunch4Americans5WXBoxScore
123 - 2019-02-01857Americans9Rampage7WBoxScore
125 - 2019-02-03868Devils3Americans5WBoxScore
129 - 2019-02-07900Wolf Pack6Americans11WBoxScore
131 - 2019-02-09917Americans4Bruins5LBoxScore
133 - 2019-02-11931Pirates6Americans8WBoxScore
136 - 2019-02-14951Americans10Sound Tigers8WBoxScore
138 - 2019-02-16962IceCaps1Americans10WBoxScore
140 - 2019-02-18975Americans7Reign5WBoxScore
142 - 2019-02-20993Sound Tigers9Americans5LBoxScore
143 - 2019-02-211001Americans5Bruins6LBoxScore
Trade Deadline --- Trades can’t be done after this day is simulated!
146 - 2019-02-241023Americans8Bears7WBoxScore
147 - 2019-02-251025Penguins10Americans3LBoxScore
148 - 2019-02-261038Americans5IceHogs6LXBoxScore
151 - 2019-03-011057Marlies7Americans12WBoxScore
152 - 2019-03-021064Americans8Heat9LXXBoxScore
154 - 2019-03-041086Falcons5Americans10WBoxScore
155 - 2019-03-051091Americans9Checkers10LXBoxScore
156 - 2019-03-061098Americans7Wild8LXXBoxScore
160 - 2019-03-101118Bears5Americans8WBoxScore
162 - 2019-03-121129Americans9Pirates6WBoxScore
164 - 2019-03-141148Monsters8Americans10WBoxScore
167 - 2019-03-171161Americans-Wolf Pack-
168 - 2019-03-181164Americans-Reign-
169 - 2019-03-191171Americans-Pirates-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
0 0 - 0.00% 0$0$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
1,285,542$ 1,223,000$ 1,223,000$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 1,279,434$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 6 7,152$ 42,912$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
201873303302503449492-4338181601201248250-235121701302201242-41724497601209101101731642278784394298723274590262611351566541.67%1518345.03%5646130549.50%570109052.29%797166048.01%151089015746571331648
Total Regular Season73303302503449492-4338181601201248250-235121701302201242-41724497601209101101731642278784394298723274590262611351566541.67%1518345.03%5646130549.50%570109052.29%797166048.01%151089015746571331648