Wolves

GP: 23 | W: 15 | L: 5 | OTL: 3 | P: 33
GF: 85 | GA: 75 | PP%: 60.00% | PK%: 31.94%
GM : Alan Tsu | Morale : 50 | Team Overall : 57
Next Games vs Wolves
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1A.J. GreerX100.008385557278487658346455582546466050580
2Dennis Yan (R)X100.007368866568697258505161625844446250570
3Emile PoirierXX99.007469856869667054505747624544445750560
4Andrew MangiapaneX99.007342937863545757255055562544445950550
5Joe ColborneXXX100.008684906684383553664754675144445850540
6Reid Duke (R)X100.007670896570505244553844604244445150500
7Cody GoloubefX99.006872596872626455254152634959595750580
Scratches
TEAM AVERAGE99.57767080697255615444505361424646585055
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1David Rittich100.00656159836862606573656546466550630
2Dustin Tokarski100.00606278696268546365633047486250610
Scratches
TEAM AVERAGE100.0063626976656557646964484747645062
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Andrew MangiapaneWolves (VEG)LW2331457616101027221706610018.24%2449821.666410917000003228.26%464522053.0500011542
2Emile PoirierWolves (VEG)LW/RW232936651741253633142469420.42%1751922.6099181628000021042.11%192216042.5011131134
3Dennis YanWolves (VEG)LW2327336023121016281464311518.49%1446820.36257214000034157.14%283114022.5600110531
4Curtis LazarGolden KnightsC/RW171636521110102430115418813.91%2043125.41214166230000311046.28%4172416002.4101002231
5Cody GoloubefWolves (VEG)D237354299030433010445486.73%4562327.095491128000027000.00%0932001.3500303012
6Devon ToewsGolden KnightsD11213152121011104124204.88%2526624.25224312000011000.00%01214001.1200011011
Team Total or Average120112198310781759515715371826546515.60%145280723.40263864471230000769345.10%5101431140112.2112568131511
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1David RittichWolves (VEG)44000.8834.16245201714581001.000344000
Team Total or Average44000.8834.16245201714581001.000344000


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers CONT StatusType Current Salary Salary Year 2 Salary Year 3 Salary Year 4 Salary Year 5 Salary Year 6 Salary Year 7 Salary Year 8 Salary Year 9 Salary Year 10 Link
A.J. GreerWolves (VEG)LW211996-12-14No204 Lbs6 ft3NoNoNo2RFAPro & Farm850,000$850,000$Link
Andrew MangiapaneWolves (VEG)LW221996-04-03No184 Lbs5 ft10NoNoNo2RFAPro & Farm500,000$500,000$Link
Cody GoloubefWolves (VEG)D271990-11-30No200 Lbs6 ft1NoNoNo3RFAPro & Farm650,000$650,000$650,000$Link
David RittichWolves (VEG)C/RW261992-08-18No202 Lbs6 ft3NoNoNo1RFAPro & Farm725,000$Link
Dennis YanWolves (VEG)LW211997-04-14Yes197 Lbs6 ft1NoNoNo3RFAPro & Farm750,000$750,000$750,000$Link
Dustin TokarskiWolves (VEG)C281990-07-14 7:21:33 AMNo205 Lbs6 ft0NoNoNo2UFAPro & Farm650,000$650,000$Link
Emile PoirierWolves (VEG)LW/RW231994-12-14No196 Lbs6 ft2NoNoNo2RFAPro & Farm850,000$850,000$Link
Joe ColborneWolves (VEG)C/LW/RW271991-01-30No221 Lbs6 ft5NoNoNo3RFAPro & Farm2,500,000$2,500,000$2,500,000$Link
Reid DukeWolves (VEG)C221996-01-28Yes191 Lbs6 ft0NoNoNo3RFAPro & Farm500,000$500,000$500,000$Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
924.11200 Lbs6 ft12.33886,111$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Emile Poirier40122
2Dennis YanAndrew Mangiapane30122
3Andrew Mangiapane20122
4Dennis YanEmile Poirier10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Cody Goloubef40122
230122
3Cody Goloubef20122
410122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Emile Poirier60122
2Dennis YanAndrew Mangiapane40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Cody Goloubef60122
240122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
160122
2Dennis YanEmile Poirier40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Cody Goloubef60122
240122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
160122Cody Goloubef60122
24012240122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
160122
2Dennis YanEmile Poirier40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Cody Goloubef60122
240122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Emile PoirierCody Goloubef
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Emile PoirierCody Goloubef
Extra Forwards
Normal PowerPlayPenalty Kill
Andrew Mangiapane, , Andrew Mangiapane,
Extra Defensemen
Normal PowerPlayPenalty Kill
, Cody Goloubef, Cody Goloubef,
Penalty Shots
, , Dennis Yan, Emile Poirier, Andrew Mangiapane
Goalie
#1 : , #2 :


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Americans11000000981000000000001100000098121.000916250031727624223734137510431421211100.00%110.00%014237937.47%17041940.57%19758933.45%473297529212388175
2Comets201001001417-300000000000201001001417-310.2501425390031727627723734137510902475323266.67%151033.33%014237937.47%17041940.57%19758933.45%473297529212388175
3Condors211000001815300000000000211000001815320.5001832500031727627623734137510802829225360.00%7357.14%014237937.47%17041940.57%19758933.45%473297529212388175
4Gulls2100001011922100001011920000000000041.0001117280031727629123734137510702328357228.57%4250.00%014237937.47%17041940.57%19758933.45%473297529212388175
5Heat220000001714322000000171430000000000041.0001728450031727628223734137510902412296233.33%7271.43%014237937.47%17041940.57%19758933.45%473297529212388175
6Monsters200002001618-210000100910-11000010078-120.50016274300317276277237341375101033116254375.00%8537.50%014237937.47%17041940.57%19758933.45%473297529212388175
7Moose1100000011920000000000011000000119221.00011213200317276256237341375105017684375.00%330.00%014237937.47%17041940.57%19758933.45%473297529212388175
8Rampage44000000382513330000002721611000000114781.00038651030031727621912373413751017778375411654.55%11109.09%014237937.47%17041940.57%19758933.45%473297529212388175
Since Last GM Reset231350131018116021118100110857510125401200968511330.717181314495103172762961237341375101009337272315553360.00%724931.94%014237937.47%17041940.57%19758933.45%473297529212388175
10Stars211000001112-1110000008711010000035-220.5001118291031727628023734137510733310226466.67%000.00%014237937.47%17041940.57%19758933.45%473297529212388175
Total231350131018116021118100110857510125401200968511330.717181314495103172762961237341375101009337272315553360.00%724931.94%014237937.47%17041940.57%19758933.45%473297529212388175
Vs Conference21115013101611431811810011085751010340120076688290.69016127743810317276286323734137510916306264295502958.00%684533.82%014237937.47%17041940.57%19758933.45%473297529212388175
Vs Division883001006055546000000282354230010032320171.06360102162003172762326237341375103309914411821942.86%331748.48%014237937.47%17041940.57%19758933.45%473297529212388175
14Wild2110000013130110000008531010000058-320.500132538003172762712373413751087273128000.00%8625.00%014237937.47%17041940.57%19758933.45%473297529212388175
15Wolves31101000232031010000059-4210010001811740.667234063003172762118237341375101463826488787.50%8712.50%014237937.47%17041940.57%19758933.45%473297529212388175

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
2333W3181314495961100933727231510
All Games
GPWLOTWOTL SOWSOLGFGA
231351310181160
Home Games
GPWLOTWOTL SOWSOLGFGA
118101108575
Visitor Games
GPWLOTWOTL SOWSOLGFGA
125412009685
Last 10 Games
WLOTWOTL SOWSOL
620200
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
553360.00%724931.94%0
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
237341375103172762
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
14237937.47%17041940.57%19758933.45%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
473297529212388175


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
2 - 2018-10-0314Wolves11Wolves5WBoxScore
4 - 2018-10-0522Wild5Wolves8WBoxScore
6 - 2018-10-0741Gulls3Wolves4WXXBoxScore
7 - 2018-10-0845Wolves8Condors4WBoxScore
10 - 2018-10-1175Rampage8Wolves10WBoxScore
13 - 2018-10-1497Heat6Wolves8WBoxScore
15 - 2018-10-16111Wolves6Comets8LBoxScore
18 - 2018-10-19129Wolves3Stars5LBoxScore
19 - 2018-10-20138Gulls6Wolves7WBoxScore
22 - 2018-10-23161Rampage5Wolves7WBoxScore
24 - 2018-10-25176Wolves11Rampage4WBoxScore
26 - 2018-10-27191Wolves10Condors11LBoxScore
27 - 2018-10-28200Monsters10Wolves9LXBoxScore
30 - 2018-10-31217Wolves8Comets9LXBoxScore
32 - 2018-11-02229Wolves5Wild8LBoxScore
33 - 2018-11-03240Rampage8Wolves10WBoxScore
36 - 2018-11-06258Heat8Wolves9WBoxScore
38 - 2018-11-08275Wolves11Moose9WBoxScore
40 - 2018-11-10289Wolves7Monsters8LXBoxScore
42 - 2018-11-12300Wolves9Wolves5LBoxScore
44 - 2018-11-14313Wolves7Wolves6WXBoxScore
47 - 2018-11-17331Stars7Wolves8WBoxScore
49 - 2018-11-19344Wolves9Americans8WBoxScore
51 - 2018-11-21355Wolves-Pirates-
53 - 2018-11-23368Wolves-Bears-
54 - 2018-11-24375IceHogs-Wolves-
57 - 2018-11-27395Wolves-Penguins-
58 - 2018-11-28403Condors-Wolves-
61 - 2018-12-01426Comets-Wolves-
63 - 2018-12-03437Wolves-Gulls-
65 - 2018-12-05454Wolves-Falcons-
66 - 2018-12-06464Monsters-Wolves-
69 - 2018-12-09486Griffins-Wolves-
70 - 2018-12-10496Wolves-Comets-
73 - 2018-12-13514Wolves-Phantoms-
74 - 2018-12-14525Sound Tigers-Wolves-
77 - 2018-12-17542Wolves-Stars-
79 - 2018-12-19555Moose-Wolves-
84 - 2018-12-24584Wolves-Barracuda-
85 - 2018-12-25588Falcons-Wolves-
88 - 2018-12-28611Marlies-Wolves-
89 - 2018-12-29625Wolves-Wild-
91 - 2018-12-31639Wolves-Senators-
93 - 2019-01-02650Crunch-Wolves-
95 - 2019-01-04670Wolves-Bruins-
98 - 2019-01-07681Falcons-Wolves-
100 - 2019-01-09698Wolves-Barracuda-
101 - 2019-01-10709Wolves-Griffins-
102 - 2019-01-11713Heat-Wolves-
106 - 2019-01-15736Wolves-Admirals-
107 - 2019-01-16744Wolf Pack-Wolves-
110 - 2019-01-19762Wolves-Crunch-
111 - 2019-01-20774Condors-Wolves-
114 - 2019-01-23794Wolves-Devils-
116 - 2019-01-25803Gulls-Wolves-
117 - 2019-01-26815Wolves-Checkers-
119 - 2019-01-28827Wolves-Rampage-
120 - 2019-01-29837IceHogs-Wolves-
123 - 2019-02-01854Wolves-Crunch-
125 - 2019-02-03867Wolves-Griffins-
126 - 2019-02-04873Wild-Wolves-
129 - 2019-02-07899Barracuda-Wolves-
130 - 2019-02-08909Wolves-IceHogs-
133 - 2019-02-11930IceCaps-Wolves-
135 - 2019-02-13943Wolves-Reign-
138 - 2019-02-16961Devils-Wolves-
142 - 2019-02-20990Comets-Wolves-
143 - 2019-02-21997Wolves-Heat-
Trade Deadline --- Trades can’t be done after this day is simulated!
146 - 2019-02-241021Wild-Wolves-
147 - 2019-02-251026Wolves-Condors-
150 - 2019-02-281054Barracuda-Wolves-
154 - 2019-03-041083Reign-Wolves-
155 - 2019-03-051088Wolves-Heat-
158 - 2019-03-081114Admirals-Wolves-
164 - 2019-03-141147Reign-Wolves-
170 - 2019-03-201176Admirals-Wolves-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
27 0 - 0.00% 0$0$3000100

Expenses
Players Total SalariesPlayers Total Average SalariesCoaches Salaries
797,500$ 547,500$ 0$
Year To Date ExpensesSalary Cap Per DaysSalary Cap To Date
257,291$ 0$ 257,291$

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 122 4,664$ 569,008$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
201823135013101811602111810011085751012540120096851133181314495103172762961237341375101009337272315553360.00%724931.94%014237937.47%17041940.57%19758933.45%473297529212388175
Total Regular Season23135013101811602111810011085751012540120096851133181314495103172762961237341375101009337272315553360.00%724931.94%014237937.47%17041940.57%19758933.45%473297529212388175