Bears

GP: 62 | W: 27 | L: 32 | OTL: 3 | P: 57
GF: 360 | GA: 399 | PP%: 52.87% | PK%: 43.75%
GM : Gary Brown | Morale : 50 | Team Overall : 59
Next Games #953 vs Griffins
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Peter HollandX100.006772907273637157776156777565656450620
2Greg CareyXX100.007671867071838863795667656444446850620
3Oskar Lindblom (R)X100.007744897871687972256359592546466550610
4Sam CarrickX100.006768666568808562786258605545456350600
5Michael BuntingX100.007167806367778162505664626144446450590
6Samuel Laberge (R)X100.007776806676666957504762645944446250580
7Michael Spacek (R)X100.007367886767666860755659635644446250580
8Sheldon DriesX100.007565986565565657715951634844445950560
9Jonne Tammela (R)XX100.007267836267424149504548594644445350500
10Steven KampferX100.008696756871725859254547802561616250640
11Mike ReillyX100.006941867758668270256348612556566150620
12Kevin CzuczmanX100.007776806576818854255241633945455650610
13Erik BurgdoerferX100.008379916879717747253841643944445450590
14Gavin Bayreuther (R)X100.007671876671586052254742624044445550560
Scratches
1Philippe Myers (R)X100.007679706779606252254742624044445450570
TEAM AVERAGE100.00756983687167715847535264464848605059
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Adin Hill100.00626885826067616865643044446450630
2Alex Lyon100.00647167756760646375646545456650630
Scratches
1Filip Gustavsson (R)100.00644759737064636967663044446350610
2Landon Bow100.00556075865457525954543044445650570
3Philippe Desrosiers100.00484455744847505349493044444950500
TEAM AVERAGE100.0059586878605958626259374444605059
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Mike ReillyBears (Was)D622598123-17523069863391631697.37%98170627.5319274655119101886310.00%03769021.4400132644
2Oskar LindblomBears (Was)LW62334881-52115524026910314112.27%3086814.00022116000012134.83%897719001.8700111345
3Peter HollandBears (Was)C62383876-41087046822215614117.19%3384313.60101315000013159.32%16475323001.8000644236
4Dale WeiseCapitalsRW21322860-74033221965511816.33%1445521.671012222549000005225.00%206212032.6400000440
5Michael BuntingBears (Was)LW6228326020036282397915211.72%1173111.8001101000000050.00%104117011.6400000054
6Sam CarrickBears (Was)C622136572331545511986713710.61%1272811.7500000000001057.24%290508011.5600003222
7Kevin CzuczmanBears (Was)D62113647-3312660696612980618.53%76112918.22914231654000644000.00%01241000.8300552121
8Erik BurgdoerferBears (Was)D6252631-369385596012456474.03%66109817.7257121654000247000.00%0459000.5600467110
9Jonne TammelaBears (Was)LW/RW6291928-58840693660253415.00%3286013.88011015000001045.21%731032000.6500323100
10Philippe MyersBears (Was)D42219217331535364825354.17%1753612.7612321400002000.00%0220000.7800120000
11Michael SpacekBears (Was)C6261016-155222210743955.61%93996.4400000000000054.55%1323712000.8000001001
12Samuel LabergeBears (Was)LW283912317511124422356.82%41936.90000000000001100.00%2170001.2400001001
13Gavin BayreutherBears (Was)D32010108141023183615140.00%1738512.0300000000110000.00%0311000.5200002000
14Sheldon DriesBears (Was)C62134-610103351420.00%1841.3602206000000056.34%7151000.9500002000
Team Total or Average743214412626-926043605725622015790118310.62%4201002013.4945681131183481011719515657.03%2334410324071.2500212328202524
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Alex LyonBears (Was)22000.9353.001202069257000.000022001
Team Total or Average22000.9353.001202069257000.000022001


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Adin HillBears (Was)G221996-05-11No202 Lbs6 ft6NoNoNo1RFAPro & Farm750,000$0$0$NoLink
Alex LyonBears (Was)G261992-12-08No201 Lbs6 ft1NoNoNo1RFAPro & Farm925,000$0$0$NoLink
Erik BurgdoerferBears (Was)D301988-12-11No207 Lbs6 ft1NoNoNo2UFAPro & Farm650,000$0$0$NoLink
Filip GustavssonBears (Was)G201998-06-07Yes183 Lbs6 ft2NoNoNo3ELCPro & Farm800,000$0$0$NoLink
Gavin BayreutherBears (Was)D241994-05-12Yes194 Lbs6 ft1NoNoNo2RFAPro & Farm925,000$0$0$NoLink
Greg CareyBears (Was)C/LW281990-05-09No195 Lbs6 ft0NoNoNo2UFAPro & Farm650,000$0$0$NoLink
Jonne TammelaBears (Was)LW/RW211997-08-05Yes187 Lbs5 ft10NoNoNo3RFAPro & Farm600,000$0$0$NoLink
Kevin CzuczmanBears (Was)D281991-01-09No206 Lbs6 ft2NoNoNo2UFAPro & Farm650,000$0$0$NoLink
Landon BowBears (Was)G231995-08-23No214 Lbs6 ft4NoNoNo2RFAPro & Farm700,000$0$0$NoLink
Michael BuntingBears (Was)LW231995-09-17No197 Lbs5 ft11NoNoNo1RFAPro & Farm600,000$0$0$NoLink
Michael SpacekBears (Was)C211997-04-09Yes187 Lbs5 ft11NoNoNo3RFAPro & Farm600,000$0$0$NoLink
Mike ReillyBears (Was)D251993-07-12No193 Lbs6 ft2NoNoNo1RFAPro & Farm650,000$0$0$NoLink
Oskar LindblomBears (Was)LW221996-08-15Yes191 Lbs6 ft1NoNoNo3RFAPro & Farm500,000$0$0$NoLink
Peter HollandBears (Was)C271992-01-14No200 Lbs6 ft2NoNoNo4RFAPro & Farm650,000$0$0$NoLink
Philippe DesrosiersBears (Was)G231995-08-15No195 Lbs6 ft1NoNoNo1RFAPro & Farm800,000$0$0$NoLink
Philippe MyersBears (Was)D221997-01-25Yes196 Lbs6 ft5NoNoNo4RFAPro & Farm725,000$0$0$NoLink
Sam CarrickBears (Was)C271992-02-03No188 Lbs6 ft0NoNoNo4RFAPro & Farm650,000$0$0$NoLink
Samuel LabergeBears (Was)LW211997-04-10Yes205 Lbs6 ft2NoNoNo4RFAPro & Farm785,000$0$0$NoLink
Sheldon DriesBears (Was)C241994-04-23No185 Lbs5 ft9NoNoNo2RFAPro & Farm925,000$0$0$NoLink
Steven KampferBears (Was)D291989-09-24No192 Lbs5 ft11NoNoNo2UFAPro & Farm650,000$0$0$NoLink
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2024.30196 Lbs6 ft12.35709,250$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
140122
2Oskar LindblomPeter HollandJonne Tammela30122
3Michael BuntingSam Carrick20122
4Michael Spacek10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Mike Reilly40122
2Kevin CzuczmanErik Burgdoerfer30122
320122
4Mike Reilly10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
160122
2Oskar LindblomPeter HollandJonne Tammela40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Mike Reilly60122
2Kevin CzuczmanErik Burgdoerfer40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
160122
2Peter HollandOskar Lindblom40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Mike Reilly60122
2Kevin CzuczmanErik Burgdoerfer40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
160122Mike Reilly60122
240122Kevin CzuczmanErik Burgdoerfer40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
160122
2Peter HollandOskar Lindblom40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Mike Reilly60122
2Kevin CzuczmanErik Burgdoerfer40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Mike Reilly
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Mike Reilly
Extra Forwards
Normal PowerPlayPenalty Kill
Sheldon Dries, Michael Bunting, Sam CarrickSheldon Dries, Michael BuntingSam Carrick
Extra Defensemen
Normal PowerPlayPenalty Kill
, , Kevin Czuczman, Kevin Czuczman
Penalty Shots
, , Peter Holland, Oskar Lindblom,
Goalie
#1 : , #2 :


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals1100000010641100000010640000000000021.000101828006715513624285689685911311114195360.00%20100.00%0551118046.69%40292743.37%713142949.90%141293212895321025472
2Americans11000000431110000004310000000000021.00046100067155136238856896859113713814100.00%4250.00%0551118046.69%40292743.37%713142949.90%141293212895321025472
3Barracuda10100000510-510100000510-50000000000000.00058130067155136229856896859114710141411100.00%7442.86%0551118046.69%40292743.37%713142949.90%141293212895321025472
4Bruins31200000915-61100000052320200000413-920.333916250067155136213585689685911832788467342.86%14657.14%0551118046.69%40292743.37%713142949.90%141293212895321025472
5Checkers404000002336-13202000001218-6202000001118-700.00023456810671551362144856896859111804514517571.43%7442.86%0551118046.69%40292743.37%713142949.90%141293212895321025472
6Condors1010000049-5000000000001010000049-500.000481200671551362368568968591140142221300.00%110.00%0551118046.69%40292743.37%713142949.90%141293212895321025472
7Crunch606000002151-30404000001235-2320200000916-700.0002137580067155136226885689685911222777611414535.71%131023.08%0551118046.69%40292743.37%713142949.90%141293212895321025472
8Devils202000001012-21010000056-11010000056-100.00010172700671551362638568968591159208396350.00%4250.00%0551118046.69%40292743.37%713142949.90%141293212895321025472
9Falcons211000001112-1110000007431010000048-420.500111930006715513627885689685911863539308562.50%7442.86%1551118046.69%40292743.37%713142949.90%141293212895321025472
10Gulls211000001011-1110000006241010000049-520.500101828006715513627685689685911541926266350.00%3166.67%0551118046.69%40292743.37%713142949.90%141293212895321025472
11Heat1000010067-1000000000001000010067-110.5006111700671551362428568968591148146123133.33%3166.67%0551118046.69%40292743.37%713142949.90%141293212895321025472
12IceCaps53101000362214100010006514310000030171380.800365995006715513622278568968591115958100809555.56%15753.33%0551118046.69%40292743.37%713142949.90%141293212895321025472
13IceHogs220000001711622000000171160000000000041.000173047006715513628385689685911951911297685.71%4250.00%0551118046.69%40292743.37%713142949.90%141293212895321025472
14Marlies330000002515102200000016881100000097261.000254570006715513621478568968591187270427457.14%000.00%0551118046.69%40292743.37%713142949.90%141293212895321025472
15Monsters1010000047-3000000000001010000047-300.000481200671551362488568968591132126132150.00%3166.67%0551118046.69%40292743.37%713142949.90%141293212895321025472
16Moose513010002730-3202000001015-5311010001715240.40027467300671551362193856896859111985942739777.78%6350.00%0551118046.69%40292743.37%713142949.90%141293212895321025472
17Penguins312000001114-31100000051420200000613-720.33311182910671551362129856896859111124341428225.00%3166.67%0551118046.69%40292743.37%713142949.90%141293212895321025472
18Phantoms312000001821-31010000056-1211000001315-220.333183048006715513621388568968591111247303622100.00%10730.00%0551118046.69%40292743.37%713142949.90%141293212895321025472
19Pirates330000002820811000000963220000001914561.00028487600671551362142856896859111044254499666.67%7442.86%2551118046.69%40292743.37%713142949.90%141293212895321025472
20Rampage11000000211000000000001100000021121.00023500671551362388568968591131150192150.00%000.00%0551118046.69%40292743.37%713142949.90%141293212895321025472
21Reign11000000972000000000001100000097221.0009152400671551362378568968591132118144375.00%4325.00%0551118046.69%40292743.37%713142949.90%141293212895321025472
22Senators311001001518-320100100914-51100000064230.5001528430067155136213785689685911823617528337.50%6350.00%0551118046.69%40292743.37%713142949.90%141293212895321025472
23Sound Tigers20200000522-1710100000314-111010000028-600.000510150067155136268856896859111053029333133.33%7614.29%0551118046.69%40292743.37%713142949.90%141293212895321025472
24Stars1100000010640000000000011000000106421.00010192900671551362578568968591131116186350.00%3166.67%0551118046.69%40292743.37%713142949.90%141293212895321025472
Total62253202300360399-3930131401200180190-1032121801100180209-29570.4603606369962067155136226228568968591122357627519761578352.87%1448143.75%3551118046.69%40292743.37%713142949.90%141293212895321025472
26Wild1100000010371100000010370000000000021.00010192900671551362478568968591125717204375.00%110.00%0551118046.69%40292743.37%713142949.90%141293212895321025472
27Wolf Pack312000002423121100000181441010000069-320.333244367006715513621338568968591110337755314642.86%10730.00%0551118046.69%40292743.37%713142949.90%141293212895321025472
28Wolves1000010067-11000010067-10000000000010.5006121800671551362478568968591140230172150.00%000.00%0551118046.69%40292743.37%713142949.90%141293212895321025472
_Since Last GM Reset62253202300360399-3930131401200180190-1032121801100180209-29570.4603606369962067155136226228568968591122357627519761578352.87%1448143.75%3551118046.69%40292743.37%713142949.90%141293212895321025472
_Vs Conference46162702100256302-462271301100119147-282491401000137155-18370.4022564487042067155136219628568968591116435615827241045250.00%1066241.51%2551118046.69%40292743.37%713142949.90%141293212895321025472

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
6257L23606369962622223576275197620
All Games
GPWLOTWOTL SOWSOLGFGA
6225322300360399
Home Games
GPWLOTWOTL SOWSOLGFGA
3013141200180190
Visitor Games
GPWLOTWOTL SOWSOLGFGA
3212181100180209
Last 10 Games
WLOTWOTL SOWSOL
190000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
1578352.87%1448143.75%3
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
85689685911671551362
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
551118046.69%40292743.37%713142949.90%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
141293212895321025472


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2018-10-022Bears8IceCaps4WBoxScore
3 - 2018-10-0418Bears7Moose2WBoxScore
4 - 2018-10-0529Sound Tigers14Bears3LBoxScore
7 - 2018-10-0851Crunch10Bears3LBoxScore
9 - 2018-10-1068Checkers8Bears3LBoxScore
12 - 2018-10-1390Bears4Penguins6LBoxScore
14 - 2018-10-15102Bears9Phantoms6WBoxScore
16 - 2018-10-17115Crunch7Bears4LBoxScore
17 - 2018-10-18122Bears12IceCaps5WBoxScore
19 - 2018-10-20143Bears5Checkers9LBoxScore
21 - 2018-10-22154Pirates6Bears9WBoxScore
24 - 2018-10-25174Bears10Pirates6WBoxScore
25 - 2018-10-26183IceHogs8Bears9WBoxScore
28 - 2018-10-29206Wolf Pack6Bears14WBoxScore
30 - 2018-10-31216Bears3Crunch7LBoxScore
32 - 2018-11-02233Bears10Stars6WBoxScore
34 - 2018-11-04241Admirals6Bears10WBoxScore
36 - 2018-11-06262Bears6Senators4WBoxScore
38 - 2018-11-08272Bears9Marlies7WBoxScore
39 - 2018-11-09279IceCaps5Bears6WXBoxScore
43 - 2018-11-13307Senators8Bears4LBoxScore
47 - 2018-11-17328Bears2Rampage1WBoxScore
48 - 2018-11-18337Crunch9Bears2LBoxScore
51 - 2018-11-21354Bears2Sound Tigers8LBoxScore
53 - 2018-11-23368Wolves7Bears6LXBoxScore
55 - 2018-11-25387Bears9Pirates8WBoxScore
57 - 2018-11-27397Falcons4Bears7WBoxScore
59 - 2018-11-29413Bears4Gulls9LBoxScore
61 - 2018-12-01429Wild3Bears10WBoxScore
64 - 2018-12-04450Penguins1Bears5WBoxScore
66 - 2018-12-06462Bears2Penguins7LBoxScore
68 - 2018-12-08481Bears6Crunch9LBoxScore
70 - 2018-12-10491IceHogs3Bears8WBoxScore
72 - 2018-12-12504Bears6Heat7LXBoxScore
74 - 2018-12-14522Marlies4Bears8WBoxScore
77 - 2018-12-17543Bears5Devils6LBoxScore
79 - 2018-12-19553Crunch9Bears3LBoxScore
82 - 2018-12-22574Gulls2Bears6WBoxScore
84 - 2018-12-24582Bears4Monsters7LBoxScore
87 - 2018-12-27607Bruins2Bears5WBoxScore
89 - 2018-12-29618Bears4Falcons8LBoxScore
91 - 2018-12-31636Bears8Moose7WXBoxScore
92 - 2019-01-01643Marlies4Bears8WBoxScore
94 - 2019-01-03661Bears4Phantoms9LBoxScore
97 - 2019-01-06676Senators6Bears5LXBoxScore
99 - 2019-01-08692Bears6Checkers9LBoxScore
101 - 2019-01-10707Checkers10Bears9LBoxScore
104 - 2019-01-13726Bears8IceCaps3WBoxScore
106 - 2019-01-15737Devils6Bears5LBoxScore
107 - 2019-01-16745Bears4Condors9LBoxScore
110 - 2019-01-19767Americans3Bears4WBoxScore
113 - 2019-01-22787Bears6Wolf Pack9LBoxScore
115 - 2019-01-24798Barracuda10Bears5LBoxScore
118 - 2019-01-27820Bears2Bruins9LBoxScore
119 - 2019-01-28829Wolf Pack8Bears4LBoxScore
122 - 2019-01-31845Bears2Moose6LBoxScore
124 - 2019-02-02859Moose8Bears6LBoxScore
126 - 2019-02-04877Bears2IceCaps5LBoxScore
128 - 2019-02-06889Moose7Bears4LBoxScore
131 - 2019-02-09915Bears9Reign7WBoxScore
132 - 2019-02-10920Phantoms6Bears5LBoxScore
135 - 2019-02-13937Bears2Bruins4LBoxScore
137 - 2019-02-15953Bears-Griffins-
138 - 2019-02-16958Checkers-Bears-
140 - 2019-02-18979Bears-Phantoms-
141 - 2019-02-19989Devils-Bears-
Trade Deadline --- Trades can’t be done after this day is simulated!
144 - 2019-02-221008Bears-Comets-
145 - 2019-02-231019Bears-Stars-
146 - 2019-02-241023Americans-Bears-
150 - 2019-02-281050Pirates-Bears-
152 - 2019-03-021066Bears-Wolves-
154 - 2019-03-041079Phantoms-Bears-
158 - 2019-03-081108Pirates-Bears-
160 - 2019-03-101118Bears-Americans-
164 - 2019-03-141143Sound Tigers-Bears-
169 - 2019-03-191170Sound Tigers-Bears-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
8 0 - 0.00% 0$0$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
1,198,717$ 1,418,500$ 1,058,500$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 1,193,892$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 36 8,295$ 298,620$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
201862253202300360399-3930131401200180190-1032121801100180209-29573606369962067155136226228568968591122357627519761578352.87%1448143.75%3551118046.69%40292743.37%713142949.90%141293212895321025472
Total Regular Season62253202300360399-3930131401200180190-1032121801100180209-29573606369962067155136226228568968591122357627519761578352.87%1448143.75%3551118046.69%40292743.37%713142949.90%141293212895321025472