Bears

GP: 1 | W: 1 | L: 0 | OTL: 0 | P: 2
GF: 0 | GA: 0 | PP%: 25.00% | PK%: 0.00%
GM : Gary Brown | Morale : 51 | Team Overall : 60
Next Games vs Crunch
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Pierre-Edouard BellemareXXX99.006742937971639461856258812566676751650
2Peter HollandX100.006772907273637157776156777565656451630
3Greg CareyXX99.007671867071838863795667656444446848630
4Oskar Lindblom (R)X100.007744897871687972256359592546466551620
5Dale WeiseX100.008257867377577259445959592570726248610
6Michael BuntingX100.007167806367778162505664626144446451600
7Sam CarrickX100.006768666568808562786258605545456351600
8Michael Spacek (R)X100.007367886767666860755659635644446251590
9Samuel Laberge (R)X100.007776806676666957504762645944446251580
10Sheldon DriesX100.007565986565565657715951634844445951560
11Jonne Tammela (R)XX100.007267836267424149504548594644445351510
12Steven KampferX99.008696756871725859254547802561616251640
13Mike ReillyX99.006941867758668270256348612556566151620
14Kevin CzuczmanX100.007776806576818854255241633945455652610
15Erik BurgdoerferX100.008379916879717747253841643944445451590
16Philippe Myers (R)X100.007679706779606252254742624044445451580
17Gavin Bayreuther (R)X100.007671876671586052254742624044445551570
Scratches
TEAM AVERAGE99.76756784697166725849545365445050615160
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Adin Hill98.00626885826067616865643044446451630
2Alex Lyon100.00647167756760646375646545456651630
Scratches
1Filip Gustavsson (R)100.00644759737064636967663044446349620
2Landon Bow100.00556075865457525954543044445649570
3Philippe Desrosiers100.00484455744847505349493044444949510
TEAM AVERAGE99.6059586878605958626259374444605059
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Oskar LindblomBears (Was)LW13032001361250.00%11919.02000010000011100.00%100013.1600000100
2Pierre-Edouard BellemareBears (Was)C/LW/RW12132004763133.33%12424.6700002000000053.13%3210002.4300000010
3Dale WeiseBears (Was)RW1022155021020.00%01515.70011020000000100.00%101002.5500010000
4Greg CareyBears (Was)C/LW11121553182212.50%02424.50011120000000100.00%100001.6300010000
5Steven KampferBears (Was)D11011002131033.33%22727.231011200000000.00%000000.7300000001
6Erik BurgdoerferBears (Was)D1011300111010.00%01919.370000100000000.00%001001.0300000000
7Mike ReillyBears (Was)D1011100222100.00%12727.230000200000000.00%012000.7300000000
8Sam CarrickBears (Was)C1011100311000.00%01111.9500000000000044.44%900001.6700000000
9Gavin BayreutherBears (Was)D1011-100110000.00%11313.570000000000000.00%002001.4700000000
10Jonne TammelaBears (Was)LW/RW1011200230010.00%11919.02000010000000100.00%100001.0500000000
11Kevin CzuczmanBears (Was)D1000355120000.00%21818.070000100000000.00%000000.0000001000
12Samuel LabergeBears (Was)LW1000-100120010.00%31313.23000000000000100.00%100000.0000000000
13Michael SpacekBears (Was)C1000-100102030.00%01313.2300000000000037.50%820000.0000000000
14Peter HollandBears (Was)C1000200430210.00%11919.0200001000000031.25%1600000.0000000000
15Michael BuntingBears (Was)LW1000000211100.00%01212.830001000000000.00%010000.0000000000
16Philippe MyersBears (Was)D1000-100000000.00%11414.520000000000000.00%011000.0000000000
17Sheldon DriesBears (Was)C1000000310010.00%066.800000000000000.00%000000.0000000000
Team Total or Average177916151515313131111522.58%1429917.64123322000001148.57%7067011.0700021111
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Adin HillBears (Was)11000.9193.00600033721000.000010000
Team Total or Average11000.9193.00600033721000.000010000


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers CONT StatusType Current Salary Salary Year 2 Salary Year 3 Salary Year 4 Salary Year 5 Salary Year 6 Salary Year 7 Salary Year 8 Salary Year 9 Salary Year 10 Link
Adin HillBears (Was)D221996-05-11No202 Lbs6 ft6NoNoNo1RFAPro & Farm750,000$Link
Alex LyonBears (Was)C/LW/RW251992-12-08No201 Lbs6 ft1NoNoNo1RFAPro & Farm925,000$Link
Dale WeiseBears (Was)RW291989-08-05No206 Lbs6 ft2NoNoNo3UFAPro & Farm2,350,000$2,350,000$2,350,000$Link
Erik BurgdoerferBears (Was)D291988-12-11No207 Lbs6 ft1NoNoNo2UFAPro & Farm650,000$650,000$Link
Filip GustavssonBears (Was)D201998-06-07Yes183 Lbs6 ft2NoNoNo3ELCPro & Farm800,000$800,000$800,000$Link
Gavin BayreutherBears (Was)D241994-05-12Yes194 Lbs6 ft1NoNoNo2RFAPro & Farm925,000$925,000$Link
Greg CareyBears (Was)C/LW281990-05-09No195 Lbs6 ft0NoNoNo2UFAPro & Farm650,000$650,000$Link
Jonne TammelaBears (Was)LW/RW211997-08-05Yes187 Lbs5 ft10NoNoNo3RFAPro & Farm600,000$600,000$600,000$Link
Kevin CzuczmanBears (Was)D271991-01-09No206 Lbs6 ft2NoNoNo2RFAPro & Farm650,000$650,000$Link
Landon BowBears (Was)D231995-08-23No214 Lbs6 ft4NoNoNo2RFAPro & Farm700,000$700,000$Link
Michael BuntingBears (Was)LW231995-09-17No197 Lbs5 ft11NoNoNo1RFAPro & Farm600,000$Link
Michael SpacekBears (Was)C211997-04-09Yes187 Lbs5 ft11NoNoNo3RFAPro & Farm600,000$600,000$600,000$Link
Mike ReillyBears (Was)D251993-07-12No193 Lbs6 ft2NoNoNo1RFAPro & Farm650,000$Link
Oskar LindblomBears (Was)LW221996-08-15Yes191 Lbs6 ft1NoNoNo3RFAPro & Farm500,000$500,000$500,000$Link
Peter HollandBears (Was)C261992-01-14No200 Lbs6 ft2NoNoNo4RFAPro & Farm650,000$650,000$650,000$650,000$Link
Philippe DesrosiersBears (Was)C231995-08-15No195 Lbs6 ft1NoNoNo1RFAPro & Farm800,000$Link
Philippe MyersBears (Was)D211997-01-25Yes196 Lbs6 ft5NoNoNo4RFAPro & Farm725,000$725,000$725,000$725,000$Link
Pierre-Edouard BellemareBears (Was)C/LW/RW331985-03-05No198 Lbs6 ft0NoNoNo1UFAPro & Farm725,000$Link
Sam CarrickBears (Was)C261992-02-03No188 Lbs6 ft0NoNoNo4RFAPro & Farm650,000$650,000$650,000$650,000$Link
Samuel LabergeBears (Was)LW211997-04-10Yes205 Lbs6 ft2NoNoNo4RFAPro & Farm785,000$785,000$785,000$785,000$Link
Sheldon DriesBears (Was)C241994-04-23No185 Lbs5 ft9NoNoNo2RFAPro & Farm925,000$925,000$Link
Steven KampferBears (Was)D281989-09-24No192 Lbs5 ft11NoNoNo2UFAPro & Farm650,000$650,000$Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2224.59196 Lbs6 ft12.32784,545$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Greg CareyPierre-Edouard BellemareDale Weise40122
2Oskar LindblomPeter HollandJonne Tammela30122
3Michael BuntingSam CarrickPierre-Edouard Bellemare20122
4Samuel LabergeMichael SpacekGreg Carey10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Steven KampferMike Reilly40122
2Kevin CzuczmanErik Burgdoerfer30122
3Philippe MyersGavin Bayreuther20122
4Steven KampferMike Reilly10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Greg CareyPierre-Edouard BellemareDale Weise60122
2Oskar LindblomPeter HollandJonne Tammela40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Steven KampferMike Reilly60122
2Kevin CzuczmanErik Burgdoerfer40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Pierre-Edouard BellemareGreg Carey60122
2Peter HollandOskar Lindblom40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Steven KampferMike Reilly60122
2Kevin CzuczmanErik Burgdoerfer40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Pierre-Edouard Bellemare60122Steven KampferMike Reilly60122
2Greg Carey40122Kevin CzuczmanErik Burgdoerfer40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Pierre-Edouard BellemareGreg Carey60122
2Peter HollandOskar Lindblom40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Steven KampferMike Reilly60122
2Kevin CzuczmanErik Burgdoerfer40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Greg CareyPierre-Edouard BellemareDale WeiseSteven KampferMike Reilly
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Greg CareyPierre-Edouard BellemareDale WeiseSteven KampferMike Reilly
Extra Forwards
Normal PowerPlayPenalty Kill
Sheldon Dries, Michael Bunting, Sam CarrickSheldon Dries, Michael BuntingSam Carrick
Extra Defensemen
Normal PowerPlayPenalty Kill
Philippe Myers, Gavin Bayreuther, Kevin CzuczmanPhilippe MyersGavin Bayreuther, Kevin Czuczman
Penalty Shots
Pierre-Edouard Bellemare, Greg Carey, Peter Holland, Oskar Lindblom, Dale Weise
Goalie
#1 : Adin Hill, #2 : Alex Lyon


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Crunch11000000734000000000001100000073421.000791600052031314140371415314125.00%000.00%0152560.00%102540.00%92045.00%189219199
Since Last GM Reset11000000734000000000001100000073421.000791600052031314140371415314125.00%000.00%0152560.00%102540.00%92045.00%189219199
Total11000000734000000000001100000073421.000791600052031314140371415314125.00%000.00%0152560.00%102540.00%92045.00%189219199
Vs Conference11000000734000000000001100000073421.000791600052031314140371415314125.00%000.00%0152560.00%102540.00%92045.00%189219199

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
12W17916313714153100
All Games
GPWLOTWOTL SOWSOLGFGA
110000073
Home Games
GPWLOTWOTL SOWSOLGFGA
000000000
Visitor Games
GPWLOTWOTL SOWSOLGFGA
110000073
Last 10 Games
WLOTWOTL SOWSOL
100000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
4125.00%000.00%0
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
3141400520
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
152560.00%102540.00%92045.00%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
189219199


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2018-09-174Bears7Crunch3WBoxScore
2 - 2018-09-1815Bears-Pirates-
3 - 2018-09-1930Crunch-Bears-
5 - 2018-09-2153Bears-Sound Tigers-
6 - 2018-09-2258Pirates-Bears-
7 - 2018-09-2367Bears-Checkers-
8 - 2018-09-2480Bears-Moose-
9 - 2018-09-2593Senators-Bears-
12 - 2018-09-28119Moose-Bears-
Trade Deadline --- Trades can’t be done after this day is simulated!
16 - 2018-10-02154Checkers-Bears-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance0.00%0.00%
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
5 0 - 0.00%0$0$3000100

Expenses
Players Total SalariesPlayers Total Average SalariesCoaches Salaries
1,726,000$ 1,366,000$ 0$
Year To Date ExpensesSalary Cap Per DaysSalary Cap To Date
0$ 0$ 0$

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 16 0$ 0$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT