Bears

GP: 23 | W: 14 | L: 9 | OTL: 0 | P: 28
GF: 67 | GA: 87 | PP%: 52.46% | PK%: 50.00%
GM : Gary Brown | Morale : 50 | Team Overall : 59
Next Games vs IceCaps
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Peter HollandX100.006772907273637157776156777565656450620
2Oskar Lindblom (R)X100.007744897871687972256359592546466550610
3Sam CarrickX100.006768666568808562786258605545456350600
4Michael BuntingX100.007167806367778162505664626144446450590
5Samuel Laberge (R)X100.007776806676666957504762645944446250580
6Michael Spacek (R)X100.007367886767666860755659635644446250580
7Sheldon DriesX100.007565986565565657715951634844445950560
8Jonne Tammela (R)XX100.007267836267424149504548594644445350500
9Mike ReillyX100.006941867758668270256348612556566150620
10Kevin CzuczmanX100.007776806576818854255241633945455650610
11Erik BurgdoerferX100.008379916879717747253841643944445450590
12Philippe Myers (R)X100.007679706779606252254742624044445450570
13Gavin Bayreuther (R)X100.007671876671586052254742624044445550560
Scratches
1Pierre-Edouard BellemareXXX100.006742937971639461856258812566676750650
2Greg CareyXX100.007671867071838863795667656444446850620
3Steven KampferX100.008696756871725859254547802561616250640
TEAM AVERAGE100.00746884697167725849545365454949615059
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
Scratches
1Adin Hill100.00626885826067616865643044446450630
2Alex Lyon100.00647167756760646375646545456650630
3Filip Gustavsson (R)100.00644759737064636967663044446350610
4Landon Bow100.00556075865457525954543044445650570
5Philippe Desrosiers100.00484455744847505349493044444950500
TEAM AVERAGE100.0059586878605958626259374444605059
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Dale WeiseCapitalsRW21322860-74033221965511816.33%1445521.671012222549000005225.00%206212032.6400000440
2Mike ReillyBears (Was)D23114960640263314475727.64%3164728.13812202146101531210.00%01620011.8500000311
3Peter HollandBears (Was)C23161531-53735163286294018.60%1533214.45101314000001159.93%564135001.8700223013
4Michael BuntingBears (Was)LW23151429600161396275215.63%128212.2801101000000075.00%4157012.0500000041
5Oskar LindblomBears (Was)LW23111728-600211595364211.58%734114.83022115000000132.35%34276001.6400000102
6Sam CarrickBears (Was)C2391625700282587296310.34%328112.2500000000000064.66%116183001.7700000011
7Kevin CzuczmanBears (Was)D2321214-18632523264921204.08%2842318.39257426000212000.00%0412000.6600221000
8Philippe MyersBears (Was)D232111322810222818111511.11%1330213.141011700002000.00%0212000.8600110000
9Jonne TammelaBears (Was)LW/RW2331013-629525162310913.04%933714.69011015000000034.62%2668000.7700010000
10Samuel LabergeBears (Was)LW2338112175993520328.57%21657.17000000000001100.00%2130001.3300001001
11Gavin BayreutherBears (Was)D230993951715238100.00%1128412.380000000018000.00%038000.6300001000
12Michael SpacekBears (Was)C233582559155218395.77%11667.2500000000000057.14%49203000.9600001000
13Erik BurgdoerferBears (Was)D23044-22494523283317140.00%2441017.86022225000013000.00%0120000.1900324000
14Sheldon DriesBears (Was)C23033-100222020.00%1451.9902206000000052.17%2351001.3100000000
Team Total or Average320107201308-3724513527027993935652811.40%160447513.99223759572101018708657.64%838205117051.380088118119
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Alex LyonBears (Was)22000.9353.001202069257000.000022001
Team Total or Average22000.9353.001202069257000.000022001


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers CONT StatusType Current Salary Salary Year 2 Salary Year 3 Salary Year 4 Salary Year 5 Salary Year 6 Salary Year 7 Salary Year 8 Salary Year 9 Salary Year 10 Link
Adin HillBears (Was)D221996-05-11No202 Lbs6 ft6NoNoNo1RFAPro & Farm750,000$Link
Alex LyonBears (Was)C/LW/RW251992-12-08No201 Lbs6 ft1NoNoNo1RFAPro & Farm925,000$Link
Erik BurgdoerferBears (Was)D291988-12-11No207 Lbs6 ft1NoNoNo2UFAPro & Farm650,000$650,000$Link
Filip GustavssonBears (Was)D201998-06-07Yes183 Lbs6 ft2NoNoNo3ELCPro & Farm800,000$800,000$800,000$Link
Gavin BayreutherBears (Was)D241994-05-12Yes194 Lbs6 ft1NoNoNo2RFAPro & Farm925,000$925,000$Link
Greg CareyBears (Was)C/LW281990-05-09No195 Lbs6 ft0NoNoNo2UFAPro & Farm650,000$650,000$Link
Jonne TammelaBears (Was)LW/RW211997-08-05Yes187 Lbs5 ft10NoNoNo3RFAPro & Farm600,000$600,000$600,000$Link
Kevin CzuczmanBears (Was)D271991-01-09No206 Lbs6 ft2NoNoNo2RFAPro & Farm650,000$650,000$Link
Landon BowBears (Was)D231995-08-23No214 Lbs6 ft4NoNoNo2RFAPro & Farm700,000$700,000$Link
Michael BuntingBears (Was)LW231995-09-17No197 Lbs5 ft11NoNoNo1RFAPro & Farm600,000$Link
Michael SpacekBears (Was)C211997-04-09Yes187 Lbs5 ft11NoNoNo3RFAPro & Farm600,000$600,000$600,000$Link
Mike ReillyBears (Was)D251993-07-12No193 Lbs6 ft2NoNoNo1RFAPro & Farm650,000$Link
Oskar LindblomBears (Was)LW221996-08-15Yes191 Lbs6 ft1NoNoNo3RFAPro & Farm500,000$500,000$500,000$Link
Peter HollandBears (Was)C261992-01-14No200 Lbs6 ft2NoNoNo4RFAPro & Farm650,000$650,000$650,000$650,000$Link
Philippe DesrosiersBears (Was)C231995-08-15No195 Lbs6 ft1NoNoNo1RFAPro & Farm800,000$Link
Philippe MyersBears (Was)D211997-01-25Yes196 Lbs6 ft5NoNoNo4RFAPro & Farm725,000$725,000$725,000$725,000$Link
Pierre-Edouard BellemareBears (Was)C/LW/RW331985-03-05No198 Lbs6 ft0NoNoNo1UFAPro & Farm725,000$Link
Sam CarrickBears (Was)C261992-02-03No188 Lbs6 ft0NoNoNo4RFAPro & Farm650,000$650,000$650,000$650,000$Link
Samuel LabergeBears (Was)LW211997-04-10Yes205 Lbs6 ft2NoNoNo4RFAPro & Farm785,000$785,000$785,000$785,000$Link
Sheldon DriesBears (Was)C241994-04-23No185 Lbs5 ft9NoNoNo2RFAPro & Farm925,000$925,000$Link
Steven KampferBears (Was)D291989-09-24No192 Lbs5 ft11NoNoNo2UFAPro & Farm650,000$650,000$Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2124.43196 Lbs6 ft12.29710,000$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
140122
2Oskar LindblomPeter HollandJonne Tammela30122
3Michael BuntingSam Carrick20122
4Samuel LabergeMichael Spacek10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Mike Reilly40122
2Kevin CzuczmanErik Burgdoerfer30122
3Philippe MyersGavin Bayreuther20122
4Mike Reilly10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
160122
2Oskar LindblomPeter HollandJonne Tammela40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Mike Reilly60122
2Kevin CzuczmanErik Burgdoerfer40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
160122
2Peter HollandOskar Lindblom40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Mike Reilly60122
2Kevin CzuczmanErik Burgdoerfer40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
160122Mike Reilly60122
240122Kevin CzuczmanErik Burgdoerfer40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
160122
2Peter HollandOskar Lindblom40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Mike Reilly60122
2Kevin CzuczmanErik Burgdoerfer40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Mike Reilly
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Mike Reilly
Extra Forwards
Normal PowerPlayPenalty Kill
Sheldon Dries, Michael Bunting, Sam CarrickSheldon Dries, Michael BuntingSam Carrick
Extra Defensemen
Normal PowerPlayPenalty Kill
Philippe Myers, Gavin Bayreuther, Kevin CzuczmanPhilippe MyersGavin Bayreuther, Kevin Czuczman
Penalty Shots
, , Peter Holland, Oskar Lindblom,
Goalie
#1 : , #2 :


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals1100000010641100000010640000000000021.000101828003267521423833913238311114195360.00%20100.00%022547347.57%14333942.18%25253946.75%545370461196378173
2Checkers20200000817-91010000038-51010000059-400.0008152300326752169383391323892172254250.00%10100.00%022547347.57%14333942.18%25253946.75%545370461196378173
3Crunch404000001233-2130300000926-171010000037-400.00012223400326752118538339132381425161757114.29%8537.50%022547347.57%14333942.18%25253946.75%545370461196378173
4IceCaps3200100026141210001000651220000002091161.00026436900326752116738339132381003362504250.00%11372.73%022547347.57%14333942.18%25253946.75%545370461196378173
5IceHogs11000000981110000009810000000000021.0009162500326752144383391323854941444100.00%2150.00%022547347.57%14333942.18%25253946.75%545370461196378173
6Marlies11000000972000000000001100000097221.0009152400326752156383391323833901222100.00%000.00%022547347.57%14333942.18%25253946.75%545370461196378173
7Moose11000000725000000000001100000072521.0007111800326752139383391323845821922100.00%10100.00%022547347.57%14333942.18%25253946.75%545370461196378173
8Penguins1010000046-2000000000001010000046-200.0004711103267521553833913238461110153133.33%000.00%022547347.57%14333942.18%25253946.75%545370461196378173
9Phantoms11000000963000000000001100000096321.0009162500326752157383391323834741611100.00%220.00%022547347.57%14333942.18%25253946.75%545370461196378173
10Pirates22000000191271100000096311000000106441.000193150003267521923833913238632850315360.00%5260.00%222547347.57%14333942.18%25253946.75%545370461196378173
11Rampage11000000211000000000001100000021121.00023500326752138383391323831150192150.00%000.00%022547347.57%14333942.18%25253946.75%545370461196378173
12Senators211000001012-21010000048-41100000064220.500102030003267521983833913238542713357228.57%4325.00%022547347.57%14333942.18%25253946.75%545370461196378173
Since Last GM Reset231390100015215021146010006787-20129300000856322280.60915226741910326752111053833913238843258277384613252.46%462350.00%222547347.57%14333942.18%25253946.75%545370461196378173
14Sound Tigers10100000314-1110100000314-110000000000000.000369003267521403833913238581423132150.00%440.00%022547347.57%14333942.18%25253946.75%545370461196378173
15Stars1100000010640000000000011000000106421.00010192900326752157383391323831116186350.00%3166.67%022547347.57%14333942.18%25253946.75%545370461196378173
Total231390100015215021146010006787-20129300000856322280.60915226741910326752111053833913238843258277384613252.46%462350.00%222547347.57%14333942.18%25253946.75%545370461196378173
Vs Conference199901000121129-8926010004873-25107300000735617200.5261212113321032675219243833913238696212253314442147.73%392146.15%222547347.57%14333942.18%25253946.75%545370461196378173
18Wolf Pack1100000014681100000014680000000000021.00014253900326752166383391323829726237457.14%3233.33%022547347.57%14333942.18%25253946.75%545370461196378173

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
2328L1152267419110584325827738410
All Games
GPWLOTWOTL SOWSOLGFGA
231391000152150
Home Games
GPWLOTWOTL SOWSOLGFGA
114610006787
Visitor Games
GPWLOTWOTL SOWSOLGFGA
129300008563
Last 10 Games
WLOTWOTL SOWSOL
730000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
613252.46%462350.00%2
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
38339132383267521
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
22547347.57%14333942.18%25253946.75%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
545370461196378173


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2018-10-022Bears8IceCaps4WBoxScore
3 - 2018-10-0418Bears7Moose2WBoxScore
4 - 2018-10-0529Sound Tigers14Bears3LBoxScore
7 - 2018-10-0851Crunch10Bears3LBoxScore
9 - 2018-10-1068Checkers8Bears3LBoxScore
12 - 2018-10-1390Bears4Penguins6LBoxScore
14 - 2018-10-15102Bears9Phantoms6WBoxScore
16 - 2018-10-17115Crunch7Bears4LBoxScore
17 - 2018-10-18122Bears12IceCaps5WBoxScore
19 - 2018-10-20143Bears5Checkers9LBoxScore
21 - 2018-10-22154Pirates6Bears9WBoxScore
24 - 2018-10-25174Bears10Pirates6WBoxScore
25 - 2018-10-26183IceHogs8Bears9WBoxScore
28 - 2018-10-29206Wolf Pack6Bears14WBoxScore
30 - 2018-10-31216Bears3Crunch7LBoxScore
32 - 2018-11-02233Bears10Stars6WBoxScore
34 - 2018-11-04241Admirals6Bears10WBoxScore
36 - 2018-11-06262Bears6Senators4WBoxScore
38 - 2018-11-08272Bears9Marlies7WBoxScore
39 - 2018-11-09279IceCaps5Bears6WXBoxScore
43 - 2018-11-13307Senators8Bears4LBoxScore
47 - 2018-11-17328Bears2Rampage1WBoxScore
48 - 2018-11-18337Crunch9Bears2LBoxScore
51 - 2018-11-21354Bears-Sound Tigers-
53 - 2018-11-23368Wolves-Bears-
55 - 2018-11-25387Bears-Pirates-
57 - 2018-11-27397Falcons-Bears-
59 - 2018-11-29413Bears-Gulls-
61 - 2018-12-01429Wild-Bears-
64 - 2018-12-04450Penguins-Bears-
66 - 2018-12-06462Bears-Penguins-
68 - 2018-12-08481Bears-Crunch-
70 - 2018-12-10491IceHogs-Bears-
72 - 2018-12-12504Bears-Heat-
74 - 2018-12-14522Marlies-Bears-
77 - 2018-12-17543Bears-Devils-
79 - 2018-12-19553Crunch-Bears-
82 - 2018-12-22574Gulls-Bears-
84 - 2018-12-24582Bears-Monsters-
87 - 2018-12-27607Bruins-Bears-
89 - 2018-12-29618Bears-Falcons-
91 - 2018-12-31636Bears-Moose-
92 - 2019-01-01643Marlies-Bears-
94 - 2019-01-03661Bears-Phantoms-
97 - 2019-01-06676Senators-Bears-
99 - 2019-01-08692Bears-Checkers-
101 - 2019-01-10707Checkers-Bears-
104 - 2019-01-13726Bears-IceCaps-
106 - 2019-01-15737Devils-Bears-
107 - 2019-01-16745Bears-Condors-
110 - 2019-01-19767Americans-Bears-
113 - 2019-01-22787Bears-Wolf Pack-
115 - 2019-01-24798Barracuda-Bears-
118 - 2019-01-27820Bears-Bruins-
119 - 2019-01-28829Wolf Pack-Bears-
122 - 2019-01-31845Bears-Moose-
124 - 2019-02-02859Moose-Bears-
126 - 2019-02-04877Bears-IceCaps-
128 - 2019-02-06889Moose-Bears-
131 - 2019-02-09915Bears-Reign-
132 - 2019-02-10920Phantoms-Bears-
135 - 2019-02-13937Bears-Bruins-
137 - 2019-02-15953Bears-Griffins-
138 - 2019-02-16958Checkers-Bears-
140 - 2019-02-18979Bears-Phantoms-
141 - 2019-02-19989Devils-Bears-
Trade Deadline --- Trades can’t be done after this day is simulated!
144 - 2019-02-221008Bears-Comets-
145 - 2019-02-231019Bears-Stars-
146 - 2019-02-241023Americans-Bears-
150 - 2019-02-281050Pirates-Bears-
152 - 2019-03-021066Bears-Wolves-
154 - 2019-03-041079Phantoms-Bears-
158 - 2019-03-081108Pirates-Bears-
160 - 2019-03-101118Bears-Americans-
164 - 2019-03-141143Sound Tigers-Bears-
169 - 2019-03-191170Sound Tigers-Bears-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
27 0 - 0.00% 0$0$3000100

Expenses
Players Total SalariesPlayers Total Average SalariesCoaches Salaries
1,491,000$ 1,131,000$ 0$
Year To Date ExpensesSalary Cap Per DaysSalary Cap To Date
486,356$ 0$ 486,356$

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 122 8,719$ 1,063,718$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
2018231390100015215021146010006787-201293000008563222815226741910326752111053833913238843258277384613252.46%462350.00%222547347.57%14333942.18%25253946.75%545370461196378173
Total Regular Season231390100015215021146010006787-201293000008563222815226741910326752111053833913238843258277384613252.46%462350.00%222547347.57%14333942.18%25253946.75%545370461196378173