´╗┐

Bruins

GP: 11 | W: 7 | L: 4 | OTL: 0 | P: 14
GF: 59 | GA: 48 | PP%: 41.18% | PK%: 68.18%
GM : Grant Cumming | Morale : 50 | Team Overall : 58
Next Games #82 vs Penguins
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Nate Thompson (C)XX100.008345906976646858906358852575786650650
2Sean Kuraly (A)XX100.008459847277628660776058792555556650630
3Logan ShawX100.008045947376628859506257772561626650630
4Cole SchneiderXX100.007772877172849062506258655544446550620
5Valentin ZykovXX100.006142937174658567257070502545457350610
6Colby CaveXX100.007368856768839059745756625344446250600
7Rudolfs Balcers (R)X100.007263946563788263505964636144446650600
8Nicolas KerdilesX100.007572816672585762786160645744446350590
9Trent Frederic (R)X100.008280866580535162785763686044446450590
10Jakob Forsbacka Karlsson (R)X100.007368866468646560755660635744446250580
11Zach Senyshyn (R)X100.007871936771677154505054645144446050570
12Justin HickmanXX100.007880746580515153664556635344445850550
13Rob O'GaraX100.007945937478678355255047792547476250650
14Matt Grzelcyk (A)X100.006941887861718968255548612551516150620
15Jakub Zboril (R)X100.007773866573687448253941623944445350570
16Ben BetkerX100.008185736285535645253539633744445150550
17Chris CastoX100.007976876476515346253739623744445150550
18Tyler GanlyX100.008176926576505147254039633744445250550
Scratches
1Francis Perron (R)X100.006862836062687252505347584544445450540
2Anton ZlobinX100.00637370675548575667545755504444150530
3Deven Sideroff (R)X100.006965776365707648504447584544445350530
4Adam Musil (R)X100.007976876676505149614746634444445450530
5Louie Belpedio (R)X100.007869996569505147253939623744445150540
6Harrison RuoppX100.00567364715955585325474655504444150530
7Joonas Lyytinen (R)X100.006458776358586246253640553844444950520
TEAM AVERAGE100.00746585677162695549515264424747555058
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Anton Forsberg98.00697268687068596678704248486850650
2Mike Condon100.00706665777861536669694359596650650
Scratches
1Jamie Phillips100.00574860636158536058573044445650550
TEAM AVERAGE99.3365626469706255646865385050635062
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Logan ShawBruins (Bos)RW11141024620171654252725.93%1024422.21651110180000181048.00%25209111.9600000211
2Nate ThompsonBruins (Bos)C/LW1132124617514333618228.33%723921.790992170000180164.17%3741612102.0000100021
3Sean KuralyBruins (Bos)C/LW11111122540211353153120.75%723321.18246418000182064.71%17102011.8900000113
4Valentin ZykovBruins (Bos)LW/RW117512-2204134392516.28%518817.10112415000001016.67%6131001.2800000000
5Colby CaveBruins (Bos)C/LW11459-22018211631025.00%820218.37112115000060061.94%13407000.8900000000
6Cole SchneiderBruins (Bos)LW/RW11279-2751512297166.90%719818.01022115000080042.86%757000.9100010000
7Rudolfs BalcersBruins (Bos)LW114480101013113652411.11%214613.2800003000001050.00%1872001.1000011000
8Nicolas KerdilesBruins (Bos)LW114371001552591616.00%211210.2200000000051075.00%1262001.2500000001
9Matt GrzelcykBruins (Bos)D1115628025182910103.45%3130928.13112323000016000.00%0612000.3900000010
10Rob O'GaraBruins (Bos)D111560002521177165.88%1930828.01101223000018000.00%0615000.3900000010
11Ben BetkerBruins (Bos)D10235511520791422.22%1418518.5410121000007000.00%0120000.5400001000
12Jakub ZborilBruins (Bos)D11145424201211103110.00%1221919.97011012000011100.00%0314000.4600211000
13Jakob Forsbacka KarlssonBruins (Bos)C112241175861981310.53%3888.0200000000000053.57%2813000.9100001010
14Trent FredericBruins (Bos)C11224-1201416288147.14%212811.6900001000000156.96%7943000.6200000001
15Zach SenyshynBruins (Bos)RW11033-3551010118110.00%313312.120000000000000.00%013000.4500010000
16Tyler GanlyBruins (Bos)D11112-310103762216.67%1316014.561012200001000.00%017000.2500200000
17Chris CastoBruins (Bos)D11011-175790240.00%1016715.200000000009000.00%005000.1200010000
18Justin HickmanBruins (Bos)C/RW11000136101372240.00%1908.1900001000000050.00%203000.0000020000
19Louie BelpedioBruins (Bos)D1000200020000.00%21313.650000000000000.00%001000.0000000000
Team Total or Average1985992151191648025423842314225013.95%158336717.011424383118100011307261.11%702100128220.9000574377
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Anton ForsbergBruins (Bos)97200.9054.095430037388196010.000092310
2Mike CondonBruins (Bos)20020.8844.4113600108655000.000029000
Team Total or Average117220.9014.156800047474251010.00001111310


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Adam MusilBruins (Bos)C251994-03-26Yes202 Lbs6 ft3NoNoNo3RFAPro & Farm650,000$0$0$NoLink
Anton ForsbergBruins (Bos)G261992-11-26No192 Lbs6 ft3NoNoNo2RFAPro & Farm800,000$0$0$NoLink
Anton ZlobinBruins (Bos)LW261993-02-22No209 Lbs5 ft11NoNoNo1RFAPro & Farm500,000$0$0$NoLink
Ben BetkerBruins (Bos)D241994-09-24No223 Lbs6 ft6NoNoNo1RFAPro & Farm500,000$0$0$NoLink
Chris CastoBruins (Bos)D271991-12-27No200 Lbs6 ft1NoNoNo1RFAPro & Farm700,000$0$0$NoLink
Colby CaveBruins (Bos)C/LW241994-12-26No200 Lbs6 ft1NoNoNo1RFAPro & Farm700,000$0$0$NoLink
Cole SchneiderBruins (Bos)LW/RW281990-08-26No200 Lbs6 ft1NoNoNo1UFAPro & Farm725,000$0$0$NoLink
Deven SideroffBruins (Bos)RW221997-04-14Yes171 Lbs5 ft11NoNoNo3RFAPro & Farm700,000$0$0$NoLink
Francis PerronBruins (Bos)LW231996-04-17Yes166 Lbs6 ft0NoNoNo2RFAPro & Farm500,000$0$0$NoLink
Harrison RuoppBruins (Bos)D261993-03-17No192 Lbs6 ft3NoNoNo1RFAPro & Farm700,000$0$0$NoLink
Jakob Forsbacka KarlssonBruins (Bos)C221996-10-31Yes184 Lbs6 ft1NoNoNo3RFAPro & Farm750,000$0$0$NoLink
Jakub ZborilBruins (Bos)D221997-02-21Yes196 Lbs6 ft2NoNoNo3RFAPro & Farm950,000$0$0$NoLink
Jamie PhillipsBruins (Bos)G261993-03-24No170 Lbs6 ft1NoNoNo2RFAPro & Farm500,000$0$0$NoLink
Joonas LyytinenBruins (Bos)D241995-04-04Yes172 Lbs6 ft0NoNoNo3RFAPro & Farm500,000$0$0$NoLink
Justin HickmanBruins (Bos)C/RW251994-03-18No224 Lbs6 ft2NoNoNo1RFAPro & Farm600,000$0$0$NoLink
Logan ShawBruins (Bos)RW261992-10-05No202 Lbs6 ft3NoNoNo1RFAPro & Farm800,000$0$0$NoLink
Louie BelpedioBruins (Bos)D221996-05-14Yes193 Lbs5 ft11NoNoNo3RFAPro & Farm700,000$0$0$NoLink
Matt GrzelcykBruins (Bos)D251994-01-05No174 Lbs5 ft9NoNoNo2RFAPro & Farm700,000$0$0$NoLink
Mike CondonBruins (Bos)G281990-04-26No197 Lbs6 ft2NoNoNo1UFAPro & Farm600,000$0$0$NoLink
Nate ThompsonBruins (Bos)C/LW331985-07-14 1:21:32 AMNo212 Lbs6 ft0NoNoNo2UFAPro & Farm1,500,000$0$0$NoLink
Nicolas KerdilesBruins (Bos)LW241994-10-01No191 Lbs6 ft2NoNoNo2RFAPro & Farm650,000$0$0$NoLink
Rob O'GaraBruins (Bos)D251993-07-06No207 Lbs6 ft4NoNoNo3RFAPro & Farm925,000$0$0$NoLink
Rudolfs BalcersBruins (Bos)LW221997-04-08Yes165 Lbs5 ft11NoNoNo3RFAPro & Farm500,000$0$0$NoLink
Sean KuralyBruins (Bos)C/LW261993-01-20No205 Lbs6 ft2NoNoNo2RFAPro & Farm950,000$0$0$NoLink
Trent FredericBruins (Bos)C211998-02-11Yes203 Lbs6 ft2NoNoNo3RFAPro & Farm900,000$0$0$NoLink
Tyler GanlyBruins (Bos)D241995-03-22No204 Lbs6 ft2NoNoNo1RFAPro & Farm500,000$0$0$NoLink
Valentin ZykovBruins (Bos)LW/RW231995-05-14No224 Lbs6 ft1NoNoNo1RFAPro & Farm850,000$0$0$NoLink
Zach SenyshynBruins (Bos)RW221997-03-30Yes192 Lbs6 ft1NoNoNo3RFAPro & Farm950,000$0$0$NoLink
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2824.68195 Lbs6 ft11.96725,000$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Sean KuralyNate ThompsonLogan Shaw40122
2Cole SchneiderColby CaveValentin Zykov30122
3Rudolfs BalcersTrent FredericZach Senyshyn20122
4Nicolas KerdilesJakob Forsbacka KarlssonJustin Hickman10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Rob O'GaraMatt Grzelcyk40122
2Jakub ZborilBen Betker30122
3Tyler GanlyChris Casto20122
4Rob O'GaraMatt Grzelcyk10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Sean KuralyNate ThompsonLogan Shaw60122
2Cole SchneiderColby CaveValentin Zykov40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Rob O'GaraMatt Grzelcyk60122
2Jakub ZborilBen Betker40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Nate ThompsonLogan Shaw60122
2Sean KuralyCole Schneider40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Rob O'GaraMatt Grzelcyk60122
2Jakub ZborilBen Betker40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Nate Thompson60122Rob O'GaraMatt Grzelcyk60122
2Logan Shaw40122Jakub ZborilBen Betker40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Nate ThompsonLogan Shaw60122
2Sean KuralyCole Schneider40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Rob O'GaraMatt Grzelcyk60122
2Jakub ZborilBen Betker40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Sean KuralyNate ThompsonLogan ShawRob O'GaraMatt Grzelcyk
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Sean KuralyNate ThompsonLogan ShawRob O'GaraMatt Grzelcyk
Extra Forwards
Normal PowerPlayPenalty Kill
Rudolfs Balcers, Trent Frederic, Nicolas KerdilesRudolfs Balcers, Trent FredericNicolas Kerdiles
Extra Defensemen
Normal PowerPlayPenalty Kill
Tyler Ganly, Chris Casto, Jakub ZborilTyler GanlyChris Casto, Jakub Zboril
Penalty Shots
Nate Thompson, Logan Shaw, Sean Kuraly, Cole Schneider, Valentin Zykov
Goalie
#1 : Anton Forsberg, #2 : Mike Condon


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Total11740000059481165100000382513523000002123-2140.63659921511012271914239418013217475158164254341441.18%22768.18%011920857.21%18129361.77%12920164.18%23413125096196102
_Since Last GM Reset11740000059481165100000382513523000002123-2140.63659921511012271914239418013217475158164254341441.18%22768.18%011920857.21%18129361.77%12920164.18%23413125096196102
_Vs Conference11740000059481165100000382513523000002123-2140.63659921511012271914239418013217475158164254341441.18%22768.18%011920857.21%18129361.77%12920164.18%23413125096196102

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
1114L1599215142347515816425410
All Games
GPWLOTWOTL SOWSOLGFGA
117400005948
Home Games
GPWLOTWOTL SOWSOLGFGA
65100003825
Visitor Games
GPWLOTWOTL SOWSOLGFGA
52300002123
Last 10 Games
WLOTWOTL SOWSOL
620200
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
341441.18%22768.18%0
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
94180132171227191
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
11920857.21%18129361.77%12920164.18%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
23413125096196102


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2018-10-022Phantoms5Bruins9WBoxScore
3 - 2018-10-0410Phantoms2Bruins7WBoxScore
5 - 2018-10-0618Bruins4Phantoms3WXBoxScore
7 - 2018-10-0826Bruins3Phantoms5LBoxScore
9 - 2018-10-1034Phantoms7Bruins9WBoxScore
15 - 2018-10-1658Penguins5Bruins4LXBoxScore
17 - 2018-10-1862Penguins5Bruins6WBoxScore
19 - 2018-10-2066Bruins4Penguins2WBoxScore
21 - 2018-10-2270Bruins4Penguins5LXBoxScore
23 - 2018-10-2474Penguins1Bruins3WBoxScore
25 - 2018-10-2678Bruins6Penguins8LBoxScore
27 - 2018-10-2882Penguins-Bruins-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
32 0 - 0.00% 0$0$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
0$ 2,030,000$ 1,724,917$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 0$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 2 0$ 0$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
201811740000059481165100000382513523000002123-21459921511012271914239418013217475158164254341441.18%22768.18%011920857.21%18129361.77%12920164.18%23413125096196102
Total Playoff11740000059481165100000382513523000002123-21459921511012271914239418013217475158164254341441.18%22768.18%011920857.21%18129361.77%12920164.18%23413125096196102