Bruins

GP: 22 | W: 16 | L: 3 | OTL: 3 | P: 35
GF: 61 | GA: 42 | PP%: 47.06% | PK%: 59.26%
GM : Grant Cumming | Morale : 50 | Team Overall : 58
Next Games vs Pirates
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Nate Thompson (C)XX99.008345906976646858906358852575786650650
2Sean Kuraly (A)XX100.008459847277628660776058792555556650630
3Logan ShawX100.008045947376628859506257772561626650630
4Cole SchneiderXX100.007772877172849062506258655544446550620
5Valentin ZykovXX100.006142937174658567257070502545457350610
6Colby CaveXX100.007368856768839059745756625344446250600
7Rudolfs Balcers (R)X100.007263946563788263505964636144446650600
8Nicolas KerdilesX100.007572816672585762786160645744446350590
9Jakob Forsbacka Karlsson (R)X100.007368866468646560755660635744446250580
10Zach Senyshyn (R)X100.007871936771677154505054645144446050570
11Rob O'GaraX99.007945937478678355255047792547476250650
12Matt Grzelcyk (A)X99.006941887861718968255548612551516150620
13Jakub Zboril (R)X100.007773866573687448253941623944445350570
14Ben BetkerX100.008185736285535645253539633744445150550
15Tyler GanlyX100.008176926576505147254039633744445250550
16Louie Belpedio (R)X100.007869996569505147253939623744445150540
Scratches
1Trent Frederic (R)X100.008280866580535162785763686044446450590
2Justin HickmanXX100.007880746580515153664556635344445850550
3Francis Perron (R)X100.006862836062687252505347584544445450540
4Anton ZlobinX100.00637370675548575667545755504444150530
5Deven Sideroff (R)X100.006965776365707648504447584544445350530
6Adam Musil (R)X100.007976876676505149614746634444445450530
7Chris CastoX100.007976876476515346253739623744445150550
8Harrison RuoppX100.00567364715955585325474655504444150530
9Joonas Lyytinen (R)X100.006458776358586246253640553844444950520
TEAM AVERAGE99.88746585677162695549515264424747555058
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Anton Forsberg100.00697268687068596678704248486850650
2Mike Condon97.00706665777861536669694359596650650
Scratches
1Jamie Phillips100.00574860636158536058573044445650550
TEAM AVERAGE99.0065626469706255646865385050635062
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Nate ThompsonBruins (Bos)C/LW1815294424175317287284517.24%1943624.232792151232352066.48%5401020112.0200010351
2Sean KuralyBruins (Bos)C/LW22191938245325433776315425.00%2643719.904266242138413363.41%412517011.7400022242
3Logan ShawBruins (Bos)RW2219163522553330105276718.10%1243419.765498241012140146.34%412511011.6100010223
4Cole SchneiderBruins (Bos)LW/RW2220727123220412890275022.22%639417.930220170110123146.67%15612021.3700202212
5Valentin ZykovBruins (Bos)LW/RW2271724880281470225210.00%1037016.83112217000000037.50%16214001.3000000001
6Colby CaveBruins (Bos)C/LW22617238261049403282018.75%734315.62112114000010060.92%23854001.3400011010
7Rudolfs BalcersBruins (Bos)LW22111122131210242179184213.92%1032114.6211225000393148.15%27129001.3700002112
8Matt GrzelcykBruins (Bos)D22317202014039345518135.45%3058726.72235329000142110.00%01424000.6800000011
9Rob O'GaraBruins (Bos)D2201616219541503413140.00%3658826.76011029011049000.00%0427000.5400001010
10Nicolas KerdilesBruins (Bos)LW229514740241546152819.57%522710.34000001012201055.00%2075001.2300000100
11Trent FredericBruins (Bos)C1255101400181425101320.00%515212.6700000000172059.49%7982001.3200000102
12Zach SenyshynBruins (Bos)RW223581140311626101511.54%627612.5900000000001136.36%1122000.5800000001
13Ben BetkerBruins (Bos)D22167152315333622694.55%2141618.94000012000024000.00%0315000.3400111000
14Jakob Forsbacka KarlssonBruins (Bos)C18145-17516141710205.88%521311.8600000000050065.08%6357000.4700001000
15Tyler GanlyBruins (Bos)D22044155517231311120.00%1931814.460000000002000.00%018000.2500001000
16Jakub ZborilBruins (Bos)D2203314373531201911110.00%1941919.06000012000129000.00%029000.1400313000
17Louie BelpedioBruins (Bos)D220221500211610850.00%1431814.4600000000013000.00%0111000.1300000000
18Adam MusilBruins (Bos)C1000000010000.00%011.080000000000000.00%000000.0000000000
Team Total or Average35711918330224225614052048180627347014.76%250625717.531622382420555102031116862.14%1091151187150.97006714121615
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Mike CondonBruins (Bos)109010.8903.896020039354193100.00001013101
2Anton ForsbergBruins (Bos)127320.9162.987240036427232100.0000129210
Team Total or Average2216330.9043.3913260075781425200.00002222311


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers CONT StatusType Current Salary Salary Year 2 Salary Year 3 Salary Year 4 Salary Year 5 Salary Year 6 Salary Year 7 Salary Year 8 Salary Year 9 Salary Year 10 Link
Adam MusilBruins (Bos)C241994-03-26Yes202 Lbs6 ft3NoNoNo3RFAPro & Farm650,000$650,000$650,000$Link
Anton ForsbergBruins (Bos)C251992-11-26No192 Lbs6 ft3NoNoNo2RFAPro & Farm800,000$800,000$Link
Anton ZlobinBruins (Bos)LW251993-02-22No209 Lbs5 ft11NoNoNo1RFAPro & Farm500,000$Link
Ben BetkerBruins (Bos)D241994-09-24No223 Lbs6 ft6NoNoNo1RFAPro & Farm500,000$Link
Chris CastoBruins (Bos)D261991-12-27No200 Lbs6 ft1NoNoNo1RFAPro & Farm700,000$Link
Colby CaveBruins (Bos)C/LW231994-12-26No200 Lbs6 ft1NoNoNo1RFAPro & Farm700,000$Link
Cole SchneiderBruins (Bos)LW/RW281990-08-26No200 Lbs6 ft1NoNoNo1UFAPro & Farm725,000$Link
Deven SideroffBruins (Bos)RW211997-04-14Yes171 Lbs5 ft11NoNoNo3RFAPro & Farm700,000$700,000$700,000$Link
Francis PerronBruins (Bos)LW221996-04-17Yes166 Lbs6 ft0NoNoNo2RFAPro & Farm500,000$500,000$Link
Harrison RuoppBruins (Bos)D251993-03-17No192 Lbs6 ft3NoNoNo1RFAPro & Farm700,000$Link
Jakob Forsbacka KarlssonBruins (Bos)C221996-10-31Yes184 Lbs6 ft1NoNoNo3RFAPro & Farm750,000$750,000$750,000$Link
Jakub ZborilBruins (Bos)D211997-02-21Yes196 Lbs6 ft2NoNoNo3RFAPro & Farm950,000$950,000$950,000$Link
Jamie PhillipsBruins (Bos)D251993-03-24No170 Lbs6 ft1NoNoNo2RFAPro & Farm500,000$500,000$Link
Joonas LyytinenBruins (Bos)D231995-04-04Yes172 Lbs6 ft0NoNoNo3RFAPro & Farm500,000$500,000$500,000$Link
Justin HickmanBruins (Bos)C/RW241994-03-18No224 Lbs6 ft2NoNoNo1RFAPro & Farm600,000$Link
Logan ShawBruins (Bos)RW261992-10-05No202 Lbs6 ft3NoNoNo1RFAPro & Farm800,000$Link
Louie BelpedioBruins (Bos)D221996-05-14Yes193 Lbs5 ft11NoNoNo3RFAPro & Farm700,000$700,000$700,000$Link
Matt GrzelcykBruins (Bos)D241994-01-05No174 Lbs5 ft9NoNoNo2RFAPro & Farm700,000$700,000$Link
Mike CondonBruins (Bos)C281990-04-26No197 Lbs6 ft2NoNoNo1UFAPro & Farm600,000$Link
Nate ThompsonBruins (Bos)C/LW331985-07-14 1:21:32 AMNo212 Lbs6 ft0NoNoNo2UFAPro & Farm1,500,000$1,500,000$Link
Nicolas KerdilesBruins (Bos)LW241994-10-01No191 Lbs6 ft2NoNoNo2RFAPro & Farm650,000$650,000$Link
Rob O'GaraBruins (Bos)D251993-07-06No207 Lbs6 ft4NoNoNo3RFAPro & Farm925,000$925,000$925,000$Link
Rudolfs BalcersBruins (Bos)LW211997-04-08Yes165 Lbs5 ft11NoNoNo3RFAPro & Farm500,000$500,000$500,000$Link
Sean KuralyBruins (Bos)C/LW251993-01-20No205 Lbs6 ft2NoNoNo2RFAPro & Farm950,000$950,000$Link
Trent FredericBruins (Bos)C201998-02-11Yes203 Lbs6 ft2NoNoNo3ELCPro & Farm900,000$900,000$900,000$Link
Tyler GanlyBruins (Bos)D231995-03-22No204 Lbs6 ft2NoNoNo1RFAPro & Farm500,000$Link
Valentin ZykovBruins (Bos)LW/RW231995-05-14No224 Lbs6 ft1NoNoNo1RFAPro & Farm850,000$Link
Zach SenyshynBruins (Bos)RW211997-03-30Yes192 Lbs6 ft1NoNoNo3RFAPro & Farm950,000$950,000$950,000$Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2824.04195 Lbs6 ft11.96725,000$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Sean KuralyNate ThompsonLogan Shaw40122
2Cole SchneiderColby CaveValentin Zykov30122
3Rudolfs BalcersJakob Forsbacka KarlssonZach Senyshyn20122
4Nicolas KerdilesNate Thompson10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Rob O'GaraMatt Grzelcyk40122
2Jakub ZborilBen Betker30122
3Tyler GanlyLouie Belpedio20122
4Rob O'GaraMatt Grzelcyk10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Sean KuralyNate ThompsonLogan Shaw60122
2Cole SchneiderColby CaveValentin Zykov40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Rob O'GaraMatt Grzelcyk60122
2Jakub ZborilBen Betker40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Nate ThompsonSean Kuraly60122
2Logan ShawCole Schneider40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Rob O'GaraMatt Grzelcyk60122
2Jakub ZborilBen Betker40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Nate Thompson60122Rob O'GaraMatt Grzelcyk60122
2Sean Kuraly40122Jakub ZborilBen Betker40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Nate ThompsonSean Kuraly60122
2Logan ShawCole Schneider40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Rob O'GaraMatt Grzelcyk60122
2Jakub ZborilBen Betker40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Sean KuralyNate ThompsonLogan ShawRob O'GaraMatt Grzelcyk
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Sean KuralyNate ThompsonLogan ShawRob O'GaraMatt Grzelcyk
Extra Forwards
Normal PowerPlayPenalty Kill
Rudolfs Balcers, Jakob Forsbacka Karlsson, Nicolas KerdilesRudolfs Balcers, Jakob Forsbacka KarlssonNicolas Kerdiles
Extra Defensemen
Normal PowerPlayPenalty Kill
Tyler Ganly, Louie Belpedio, Jakub ZborilTyler GanlyLouie Belpedio, Jakub Zboril
Penalty Shots
Nate Thompson, Sean Kuraly, Logan Shaw, Cole Schneider, Valentin Zykov
Goalie
#1 : Mike Condon, #2 : Anton Forsberg


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Since Last GM Reset22153013001197544127201200614219108100100583325350.7951191853040030464218142702432983781253262547341647.06%542259.26%521941153.28%27747558.32%22438158.79%470261439196416211
Total22153013001197544127201200614219108100100583325350.7951191853040030464218142702432983781253262547341647.06%542259.26%521941153.28%27747558.32%22438158.79%470261439196416211
Vs Conference2013301300101663511620120053391497100100482721310.7751011592600030464217452702432983706226218499301343.33%472155.32%321941153.28%27747558.32%22438158.79%470261439196416211
Vs Division125101200583424621011003124763000100271017140.583589315100304642144827024329833981189133618950.00%23960.87%121941153.28%27747558.32%22438158.79%470261439196416211

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
2235W411918530481478125326254700
All Games
GPWLOTWOTL SOWSOLGFGA
22153130011975
Home Games
GPWLOTWOTL SOWSOLGFGA
127212006142
Visitor Games
GPWLOTWOTL SOWSOLGFGA
108101005833
Last 10 Games
WLOTWOTL SOWSOL
810100
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
341647.06%542259.26%5
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
27024329833046421
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
21941153.28%27747558.32%22438158.79%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
470261439196416211


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
2 - 2018-10-037Bruins5Pirates1WBoxScore
4 - 2018-10-0524Phantoms1Bruins3WBoxScore
5 - 2018-10-0634Bruins2Senators3LXBoxScore
7 - 2018-10-0852Americans3Bruins2LXBoxScore
10 - 2018-10-1173Bruins8IceCaps2WBoxScore
11 - 2018-10-1285Marlies3Bruins6WBoxScore
14 - 2018-10-15103Americans2Bruins6WBoxScore
16 - 2018-10-17118Bruins10Condors6WBoxScore
17 - 2018-10-18121Bruins8Americans2WBoxScore
19 - 2018-10-20141Bruins2Sound Tigers5LBoxScore
21 - 2018-10-22151Senators6Bruins4LBoxScore
24 - 2018-10-25172Wolf Pack3Bruins9WBoxScore
27 - 2018-10-28195Penguins1Bruins3WBoxScore
29 - 2018-10-30212Bruins9Moose6WBoxScore
31 - 2018-11-01226Devils5Bruins3LBoxScore
33 - 2018-11-03236Bruins2IceCaps1WBoxScore
35 - 2018-11-05251Bruins2Pirates1WBoxScore
37 - 2018-11-07263Penguins5Bruins4LXBoxScore
39 - 2018-11-09285Bruins10Sound Tigers6WBoxScore
41 - 2018-11-11296Pirates4Bruins6WBoxScore
45 - 2018-11-15321Marlies6Bruins7WXBoxScore
49 - 2018-11-19342Falcons3Bruins8WBoxScore
51 - 2018-11-21357Bruins-IceCaps-
53 - 2018-11-23369Bruins-Comets-
55 - 2018-11-25385Sound Tigers-Bruins-
57 - 2018-11-27398Bruins-Wolf Pack-
59 - 2018-11-29411Bruins-IceHogs-
60 - 2018-11-30424Rampage-Bruins-
64 - 2018-12-04447Wolf Pack-Bruins-
66 - 2018-12-06466Bruins-Condors-
68 - 2018-12-08477Moose-Bruins-
71 - 2018-12-11501IceCaps-Bruins-
73 - 2018-12-13518Bruins-Griffins-
75 - 2018-12-15532Senators-Bruins-
77 - 2018-12-17541Bruins-Senators-
80 - 2018-12-20561Bruins-Reign-
82 - 2018-12-22571Marlies-Bruins-
85 - 2018-12-25593Crunch-Bruins-
87 - 2018-12-27607Bruins-Bears-
89 - 2018-12-29619Bruins-Marlies-
90 - 2018-12-30632Condors-Bruins-
93 - 2019-01-02651Bruins-Marlies-
94 - 2019-01-03662Bruins-Pirates-
95 - 2019-01-04670Wolves-Bruins-
100 - 2019-01-09696Bruins-Phantoms-
101 - 2019-01-10702Monsters-Bruins-
104 - 2019-01-13723Checkers-Bruins-
108 - 2019-01-17746Bruins-Americans-
109 - 2019-01-18760Wolves-Bruins-
112 - 2019-01-21778Bruins-Heat-
114 - 2019-01-23790Admirals-Bruins-
116 - 2019-01-25807Bruins-Americans-
118 - 2019-01-27820Bears-Bruins-
122 - 2019-01-31844Checkers-Bruins-
125 - 2019-02-03871Wolves-Bruins-
127 - 2019-02-05882Bruins-Barracuda-
129 - 2019-02-07897Bruins-Stars-
130 - 2019-02-08906Bruins-Wild-
131 - 2019-02-09917Americans-Bruins-
135 - 2019-02-13937Bears-Bruins-
137 - 2019-02-15952Bruins-Crunch-
139 - 2019-02-17968Phantoms-Bruins-
141 - 2019-02-19987Bruins-Senators-
143 - 2019-02-211001Americans-Bruins-
Trade Deadline --- Trades can’t be done after this day is simulated!
145 - 2019-02-231012Bruins-Penguins-
147 - 2019-02-251031IceCaps-Bruins-
148 - 2019-02-261039Bruins-Devils-
151 - 2019-03-011061Devils-Bruins-
152 - 2019-03-021067Bruins-Moose-
155 - 2019-03-051090Phantoms-Bruins-
157 - 2019-03-071100Bruins-Sound Tigers-
161 - 2019-03-111122Gulls-Bruins-
162 - 2019-03-121132Bruins-Devils-
165 - 2019-03-151150Heat-Bruins-
166 - 2019-03-161155Bruins-Checkers-
169 - 2019-03-191173Bruins-Crunch-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
26 0 - 0.00% 0$0$3000100

Expenses
Players Total SalariesPlayers Total Average SalariesCoaches Salaries
2,030,000$ 1,724,917$ 0$
Year To Date ExpensesSalary Cap Per DaysSalary Cap To Date
579,253$ 0$ 574,723$

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 122 11,871$ 1,448,262$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
201822153013001197544127201200614219108100100583325351191853040030464218142702432983781253262547341647.06%542259.26%521941153.28%27747558.32%22438158.79%470261439196416211
Total Regular Season22153013001197544127201200614219108100100583325351191853040030464218142702432983781253262547341647.06%542259.26%521941153.28%27747558.32%22438158.79%470261439196416211