Marlies

GP: 20 | W: 9 | L: 10 | OTL: 1 | P: 19
GF: 57 | GA: 53 | PP%: 50.00% | PK%: 62.86%
GM : Sebastian Bravo | Morale : 50 | Team Overall : 59
Next Games vs Wolf Pack
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Adrian KempeXX100.007654828175659264727172547557577150650
2Dmitrij JaskinX100.009246937373638164306258694565666650630
3Ty RattieX100.007142957365706569257275572548487650630
4Phil VaroneXX100.007266856866848867806962645944446750630
5Ivan BarbashevXX100.007843978267629258496064612555556750620
6Nicholas Merkley (R)XX100.007368836768686868806568656544446850620
7Matt ReadXXX100.007643968366587560365057765770716450620
8Nikita SoshnikovXX100.008144917866586556255758756355556450610
9Frederik GauthierX100.008381897081768253664951674847476050590
10Nic PetanXXX100.006140877759528264475064652556566450590
11Adam ErneXX100.008175857278576260565464592548486450580
12Eric Cornel (R)XX100.007772896272747954684756635344446050570
13Matt TennysonX100.007344847076757673254047692558585950630
14Travis DermottX100.007844927370697864256648672547476350630
15Oliver KylingtonX100.007467917267717654255242624044445650590
16Roland McKeownX100.006197507475628854256547552544445750580
Scratches
1Ryan MacInnisX100.007570886070727850634648614644445550540
2Martin MarincinX100.008077886677575953254641693961615550600
3Jack Dougherty (R)X100.007469846669758346253739603744445250570
4Joe HickettsX100.007161946661788746253641583944445350570
5Sergei Boikov (R)X100.007273706473738048255041593944445350570
6Timothy Liljegren (R)X100.007570857270575950254739613744445350560
7Petteri LindbohmX100.007474756974565945253440603847475150550
8Reece Willcox (R)X100.007570876470636747253940603844445250550
9Adam Ollas Mattsson (R)X100.008178876578505341252839623744445050540
TEAM AVERAGE100.00756386717166755640525263415050605059
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
Scratches
1Eric Comrie100.00647290626468566763623044446450610
2Dan Vladar100.00624354816761656966663044446250610
3Samuel Montembeault (R)100.00537088784956505851513044445550560
4Jack Flinn100.00454455924343505246473044444750510
TEAM AVERAGE100.0056577278565755625757304444575057
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Adrian KempeMarlies (Tor)LW/RW202739666805440143499318.88%1848724.3739125301013242159.42%694613022.7100000442
2Dmitrij JaskinMarlies (Tor)RW2035276210204232121397128.93%2041320.6594131031000111061.11%181920043.0000000632
3Ty RattieMarlies (Tor)RW2011920-2255291273195815.07%834617.32224418000001023.81%21277001.1500100021
4Matt TennysonMarlies (Tor)D2021719-2111533393717195.41%4657428.73156333000125000.00%0825000.6600010001
5Travis DermottMarlies (Tor)D2031619-16121038363716108.11%3253226.61246732011124000.00%0722000.7100002000
6Phil VaroneMarlies (Tor)C/LW2011617-22271532295014372.00%734517.27055117000010058.63%36566000.9800120000
7Nicholas MerkleyMarlies (Tor)C/RW2061016-460302451202411.76%426713.3510116000000056.35%126136001.2000000110
8Ivan BarbashevMarlies (Tor)C/LW207411-400222045212815.56%727513.80000001014170164.29%14196000.8000000001
9Oliver KylingtonMarlies (Tor)D2001111811523262911130.00%1543121.55000022000219000.00%0212000.5100001000
10Nikita SoshnikovMarlies (Tor)LW/RW205510-40035202461720.83%824712.3810111000001018.18%1152000.8100000000
11Matt ReadMarlies (Tor)C/LW/RW20279-225538234012225.00%634517.29011118000000026.32%191111000.5200010000
12Nic PetanMarlies (Tor)C/LW/RW20505-1007102121323.81%41236.1800000000002038.24%3454000.8100000000
13Adam ErneMarlies (Tor)LW/RW20033-100101112370.00%11226.1400000000000033.33%382000.4900000000
14Roland McKeownMarlies (Tor)D20033-8751477520.00%523411.750000100003000.00%004000.2600001000
15Frederik GauthierMarlies (Tor)C2011230021563616.67%51095.4501107000040058.33%1212000.3700000000
Team Total or Average300105168273-98945042833469623742015.09%186485616.1919315033222213121237254.77%692177142061.120024411107
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Dan VladarMarlies (Tor)73210.8763.964090127218122000.000077001
Team Total or Average73210.8763.964090127218122000.000077001


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers CONT StatusType Current Salary Salary Year 2 Salary Year 3 Salary Year 4 Salary Year 5 Salary Year 6 Salary Year 7 Salary Year 8 Salary Year 9 Salary Year 10 Link
Adam ErneMarlies (Tor)LW/RW231995-04-20No210 Lbs6 ft1NoNoNo1RFAPro & Farm850,000$Link
Adam Ollas MattssonMarlies (Tor)D221996-07-30Yes216 Lbs6 ft5NoNoNo3RFAPro & Farm500,000$500,000$500,000$Link
Adrian KempeMarlies (Tor)LW/RW221996-09-13No202 Lbs6 ft2NoNoNo1RFAPro & Farm900,000$Link
Dan VladarMarlies (Tor)C211997-08-20No185 Lbs6 ft5NoNoNo2RFAPro & Farm650,000$650,000$Link
Dmitrij JaskinMarlies (Tor)RW241994-03-23No196 Lbs6 ft2NoNoNo1RFAPro & Farm1,000,000$Link
Eric ComrieMarlies (Tor)LW231995-07-05No175 Lbs6 ft1NoNoNo1RFAPro & Farm800,000$Link
Eric CornelMarlies (Tor)C/RW221996-04-10Yes194 Lbs6 ft2NoNoNo2RFAPro & Farm850,000$850,000$Link
Frederik GauthierMarlies (Tor)C231995-04-26No238 Lbs6 ft5NoNoNo1RFAPro & Farm900,000$Link
Ivan BarbashevMarlies (Tor)C/LW221995-12-14No180 Lbs6 ft0NoNoNo1RFAPro & Farm850,000$Link
Jack DoughertyMarlies (Tor)D221996-05-24Yes186 Lbs6 ft1NoNoNo2RFAPro & Farm800,000$800,000$Link
Jack FlinnMarlies (Tor)D221995-12-20No223 Lbs6 ft8NoNoNo1RFAPro & Farm650,000$Link
Joe HickettsMarlies (Tor)D221996-05-03No175 Lbs5 ft8NoNoNo1RFAPro & Farm650,000$Link
Martin MarincinMarlies (Tor)D261992-02-18No210 Lbs6 ft4NoNoNo1RFAPro & Farm1,250,000$Link
Matt ReadMarlies (Tor)C/LW/RW311987-06-14No185 Lbs5 ft10NoNoNo1UFAPro & Farm3,625,000$Link
Matt TennysonMarlies (Tor)D271991-04-23No205 Lbs6 ft2NoNoNo2RFAPro & Farm650,000$650,000$Link
Nic PetanMarlies (Tor)C/LW/RW231995-03-21No179 Lbs5 ft9NoNoNo1RFAPro & Farm850,000$Link
Nicholas MerkleyMarlies (Tor)C/RW211997-05-23Yes194 Lbs5 ft10NoNoNo3RFAPro & Farm900,000$900,000$900,000$Link
Nikita SoshnikovMarlies (Tor)LW/RW251993-10-14No190 Lbs5 ft11NoNoNo2RFAPro & Farm800,000$800,000$Link
Oliver KylingtonMarlies (Tor)D211997-05-19No183 Lbs6 ft0NoNoNo1RFAPro & Farm800,000$Link
Petteri LindbohmMarlies (Tor)D251993-09-22No198 Lbs6 ft3NoNoNo1RFAPro & Farm1,000,000$Link
Phil VaroneMarlies (Tor)C/LW271990-12-03No193 Lbs5 ft10NoNoNo2RFAPro & Farm650,000$650,000$Link
Reece WillcoxMarlies (Tor)D241994-03-19Yes184 Lbs6 ft3NoNoNo2RFAPro & Farm500,000$500,000$Link
Roland McKeownMarlies (Tor)D221996-01-19No195 Lbs6 ft1NoNoNo2RFAPro & Farm800,000$800,000$Link
Ryan MacInnisMarlies (Tor)C221996-02-13No185 Lbs6 ft3NoNoNo2RFAPro & Farm850,000$850,000$Link
Samuel MontembeaultMarlies (Tor)RW221996-10-30Yes192 Lbs6 ft3NoNoNo3RFAPro & Farm700,000$700,000$700,000$Link
Sergei BoikovMarlies (Tor)D221996-01-23Yes195 Lbs6 ft2NoNoNo2RFAPro & Farm500,000$500,000$Link
Timothy LiljegrenMarlies (Tor)D191999-04-30Yes192 Lbs6 ft0NoNoNo3ELCPro & Farm900,000$900,000$900,000$Link
Travis DermottMarlies (Tor)D211996-12-21No215 Lbs6 ft0NoNoNo2RFAPro & Farm850,000$850,000$Link
Ty RattieMarlies (Tor)RW251993-02-05No178 Lbs6 ft0NoNoNo1RFAPro & Farm700,000$Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2923.14195 Lbs6 ft11.66887,069$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Adrian KempeDmitrij Jaskin40122
2Matt ReadPhil VaroneTy Rattie30122
3Ivan BarbashevNicholas MerkleyNikita Soshnikov20122
4Adam ErneNic PetanAdrian Kempe10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Matt TennysonTravis Dermott40122
2Oliver Kylington30122
3Roland McKeownMatt Tennyson20122
4Travis Dermott10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Adrian KempeDmitrij Jaskin60122
2Matt ReadPhil VaroneTy Rattie40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Matt TennysonTravis Dermott60122
2Oliver Kylington40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Adrian Kempe60122
2Dmitrij JaskinPhil Varone40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Matt TennysonTravis Dermott60122
2Oliver Kylington40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Adrian Kempe60122Matt TennysonTravis Dermott60122
240122Oliver Kylington40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Adrian Kempe60122
2Dmitrij JaskinPhil Varone40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Matt TennysonTravis Dermott60122
2Oliver Kylington40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Adrian KempeDmitrij JaskinMatt TennysonTravis Dermott
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Adrian KempeDmitrij JaskinMatt TennysonTravis Dermott
Extra Forwards
Normal PowerPlayPenalty Kill
Frederik Gauthier, Nicholas Merkley, Ivan BarbashevFrederik Gauthier, Nicholas MerkleyIvan Barbashev
Extra Defensemen
Normal PowerPlayPenalty Kill
Roland McKeown, Oliver Kylington, Matt TennysonRoland McKeownOliver Kylington, Matt Tennyson
Penalty Shots
Adrian Kempe, , Dmitrij Jaskin, Phil Varone, Ty Rattie
Goalie
#1 : , #2 :


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Americans321000002721621100000181531100000096340.66727426900285138112223625923089330228522100.00%6266.67%116436145.43%13930246.03%16642239.34%429248391177382187
2Bears1010000079-21010000079-20000000000000.000711180028513813323625923085624418000.00%220.00%016436145.43%13930246.03%16642239.34%429248391177382187
3Bruins1010000036-3000000000001010000036-300.0003580028513813523625923084012524000.00%000.00%016436145.43%13930246.03%16642239.34%429248391177382187
4Crunch2110000089-1000000000002110000089-120.5008132100285138160236259230874268543266.67%40100.00%016436145.43%13930246.03%16642239.34%429248391177382187
5Devils21100000161511100000074310100000911-220.500162642102851381902362592308813011346350.00%3166.67%116436145.43%13930246.03%16642239.34%429248391177382187
6IceCaps43001000291712220000001459210010001512381.00029487701285138114523625923088627301129444.44%10640.00%016436145.43%13930246.03%16642239.34%429248391177382187
7Pirates11000000523000000000001100000052321.000591400285138137236259230831120266466.67%000.00%016436145.43%13930246.03%16642239.34%429248391177382187
8Senators20100100811-31010000046-21000010045-110.2508132100285138169236259230873174426233.33%20100.00%016436145.43%13930246.03%16642239.34%429248391177382187
Since Last GM Reset2081001100118125-794500000575341145011006172-11190.4751181963141128513817332362592308710222125480422150.00%351362.86%216436145.43%13930246.03%16642239.34%429248391177382187
Total2081001100118125-794500000575341145011006172-11190.4751181963141128513817332362592308710222125480422150.00%351362.86%216436145.43%13930246.03%16642239.34%429248391177382187
Vs Conference198901100113114-194500000575341044011005661-5190.5001131862991128513816952362592308645203113464381847.37%341264.71%216436145.43%13930246.03%16642239.34%429248391177382187
Vs Division135301100806614532000003626108210110044404130.50080130210012851381468236259230839712469343261453.85%22863.64%116436145.43%13930246.03%16642239.34%429248391177382187
13Wolf Pack303000001024-1420200000714-710100000310-700.00010192900285138110423625923081112529696116.67%7185.71%016436145.43%13930246.03%16642239.34%429248391177382187
14Wolves10100000511-60000000000010100000511-600.00051015002851381382362592308651912164375.00%110.00%016436145.43%13930246.03%16642239.34%429248391177382187

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
2019L211819631473371022212548011
All Games
GPWLOTWOTL SOWSOLGFGA
208101100118125
Home Games
GPWLOTWOTL SOWSOLGFGA
94500005753
Visitor Games
GPWLOTWOTL SOWSOLGFGA
114511006172
Last 10 Games
WLOTWOTL SOWSOL
550000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
422150.00%351362.86%2
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
23625923082851381
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
16436145.43%13930246.03%16642239.34%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
429248391177382187


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
2 - 2018-10-0310Wolf Pack9Marlies4LBoxScore
4 - 2018-10-0526Marlies1Crunch5LBoxScore
6 - 2018-10-0739IceCaps0Marlies7WBoxScore
8 - 2018-10-0954Marlies5Pirates2WBoxScore
10 - 2018-10-1174Devils4Marlies7WBoxScore
11 - 2018-10-1285Marlies3Bruins6LBoxScore
13 - 2018-10-14100Marlies4Senators5LXBoxScore
14 - 2018-10-15101Marlies7Crunch4WBoxScore
17 - 2018-10-18123Senators6Marlies4LBoxScore
20 - 2018-10-21145Americans8Marlies7LBoxScore
21 - 2018-10-22155Marlies9Americans6WBoxScore
23 - 2018-10-24169Marlies8IceCaps7WXBoxScore
25 - 2018-10-26181IceCaps5Marlies7WBoxScore
28 - 2018-10-29204Americans7Marlies11WBoxScore
30 - 2018-10-31221Marlies3Wolf Pack10LBoxScore
32 - 2018-11-02235Wolf Pack5Marlies3LBoxScore
34 - 2018-11-04245Marlies9Devils11LBoxScore
36 - 2018-11-06260Marlies7IceCaps5WBoxScore
38 - 2018-11-08272Bears9Marlies7LBoxScore
40 - 2018-11-10287Marlies5Wolves11LBoxScore
42 - 2018-11-12303Penguins-Marlies-
45 - 2018-11-15321Marlies-Bruins-
48 - 2018-11-18335Checkers-Marlies-
50 - 2018-11-20350Marlies-Condors-
52 - 2018-11-22367Wild-Marlies-
54 - 2018-11-24381Marlies-Devils-
56 - 2018-11-26391Marlies-Phantoms-
58 - 2018-11-28401Monsters-Marlies-
60 - 2018-11-30418Marlies-Crunch-
62 - 2018-12-02432Heat-Marlies-
64 - 2018-12-04448Marlies-Barracuda-
65 - 2018-12-05461Reign-Marlies-
67 - 2018-12-07475Marlies-Phantoms-
70 - 2018-12-10493Sound Tigers-Marlies-
72 - 2018-12-12507Marlies-Sound Tigers-
74 - 2018-12-14522Marlies-Bears-
75 - 2018-12-15528Crunch-Marlies-
78 - 2018-12-18551Marlies-Falcons-
79 - 2018-12-19557Pirates-Marlies-
82 - 2018-12-22571Marlies-Bruins-
85 - 2018-12-25589IceHogs-Marlies-
88 - 2018-12-28611Marlies-Wolves-
89 - 2018-12-29619Bruins-Marlies-
92 - 2019-01-01643Marlies-Bears-
93 - 2019-01-02651Bruins-Marlies-
97 - 2019-01-06680Americans-Marlies-
100 - 2019-01-09701Marlies-Senators-
102 - 2019-01-11710Wolf Pack-Marlies-
105 - 2019-01-14731Marlies-Senators-
106 - 2019-01-15739Rampage-Marlies-
109 - 2019-01-18758Marlies-Wolf Pack-
111 - 2019-01-20768Moose-Marlies-
113 - 2019-01-22783Marlies-Checkers-
114 - 2019-01-23792Marlies-Penguins-
116 - 2019-01-25806Senators-Marlies-
118 - 2019-01-27825Marlies-Crunch-
120 - 2019-01-29836Checkers-Marlies-
124 - 2019-02-02858Marlies-Penguins-
125 - 2019-02-03866Crunch-Marlies-
129 - 2019-02-07896IceCaps-Marlies-
130 - 2019-02-08907Marlies-Gulls-
133 - 2019-02-11927Phantoms-Marlies-
135 - 2019-02-13944Marlies-Moose-
137 - 2019-02-15956Admirals-Marlies-
139 - 2019-02-17970Marlies-Pirates-
141 - 2019-02-19985Griffins-Marlies-
143 - 2019-02-21998Marlies-Moose-
Trade Deadline --- Trades can’t be done after this day is simulated!
145 - 2019-02-231018Phantoms-Marlies-
147 - 2019-02-251033Marlies-Pirates-
149 - 2019-02-271047Sound Tigers-Marlies-
151 - 2019-03-011057Marlies-Americans-
154 - 2019-03-041080Comets-Marlies-
158 - 2019-03-081110Senators-Marlies-
163 - 2019-03-131136Devils-Marlies-
166 - 2019-03-161159Devils-Marlies-
169 - 2019-03-191172Marlies-Stars-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
29 0 - 0.00% 0$0$3000100

Expenses
Players Total SalariesPlayers Total Average SalariesCoaches Salaries
2,572,500$ 1,977,500$ 0$
Year To Date ExpensesSalary Cap Per DaysSalary Cap To Date
616,804$ 0$ 616,804$

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 130 15,044$ 1,955,720$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
20182081001100118125-794500000575341145011006172-11191181963141128513817332362592308710222125480422150.00%351362.86%216436145.43%13930246.03%16642239.34%429248391177382187
Total Regular Season2081001100118125-794500000575341145011006172-11191181963141128513817332362592308710222125480422150.00%351362.86%216436145.43%13930246.03%16642239.34%429248391177382187