Crunch

GP: 46 | W: 38 | L: 6 | OTL: 2 | P: 78
GF: 288 | GA: 170 | PP%: 58.41% | PK%: 65.91%
GM : Stu Lap | Morale : 50 | Team Overall : 59
Next Games #721 vs Heat
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Mikhail Grabovski (A)XXX100.00555280827179706786747269617273150680
2Brian BoyleXXX100.008357817292658977876271646977827050680
3Tyler MotteXXX100.008544957467598559345460772554546750620
4Anders Bjork (R)XX100.006742938068625865447264522550506550610
5Daniel SprongXX100.006967726767676769506469646647476850610
6Paul CareyXXX100.007643898070567858426162672555566650610
7Mitchell Stephens (R)XXX100.007671896571747762785763656044446650600
8Joshua WinquistX100.007367876167616261505760635744446250570
9Gabriel Fontaine (R)X100.007971986871737950634650634844445750560
10Kevin Bieksa (C)X100.008594627275758760255247832580846350700
11Chris ButlerX100.007672856872788557254846694468695950640
12Samuel Girard (R)X100.006741968859747375256148632557576250640
13Brendan Guhle (R)X100.006742837573755868256347622546466050610
14Matt BartkowskiX100.008245926972625853255347682564655950610
15Jacob MacDonald (R)X100.007773866173666862255258655544446350590
Scratches
1Nikolai Kulemin (A)XX100.007745997381624157386258806177786750630
2Ales HemskyXX99.875240998073393968506072724281845450630
3Carter RowneyX100.008245967375546659825757882553536650620
4Jeremy GregoireX100.006368516468717655694957565444445850550
5Justin Scott (R)XX100.007374726274738050634747604544445550550
6Jaedon Descheneau (R)XX100.007265896265484657715356615344445950540
7Gage Quinney (R)XX100.007472806272606349614646604444445350530
8Cole UllyXX100.007066796466565849504944584244445350520
9Shawn Ouellette-St. Amant (R)XX100.007671866571565947503850614844445450520
10Blaine Byron (R)X100.007264896464545647594444594244445250510
11Matthew Spencer (R)X100.007976856776778353253853645044445950600
12Dillon SimpsonX100.007771906871687449254141623944445450580
13Ryan Collins (R)X100.008282816382616546253739643744445250570
14Connor Hobbs (R)X100.006769636869677151254741573944445350560
15Mason GeertsenX100.007278586578636944253240583844444950550
TEAM AVERAGE100.00746284697265685747535465435353585059
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
Scratches
1Ville Husso100.00655873816871627071693044446650650
2Craig Anderson100.00647978726166526463646473756450640
3Oscar Dansk (R)100.00625366766564626866653044446350610
4Collin Delia (R)100.00555468755557556057573044445650560
5Nick Ellis100.00515670684953505651513044445250530
TEAM AVERAGE100.0059607174606256646261375050605060
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Brian BoyleCrunch (TB )C/LW/RW464657103294525841032287914320.18%36100321.8214253928661012267264.15%11803929032.0524113947
2Anders BjorkCrunch (TB )LW/RW4332508227101060471726612018.60%2989720.8852025752000283352.46%615714011.8300020455
3Mikhail GrabovskiCrunch (TB )C/LW/RW30234770211353548123488318.70%2656818.96413176340001212163.90%4462815032.4612100533
4Daniel SprongCrunch (TB )LW/RW463628642238107944168559221.43%2278917.1695141148000014348.78%413221011.6201002323
5Samuel GirardCrunch (TB )D46943524255567410351408.74%61112024.36611171167000370010.00%02349000.9300001041
6Paul CareyCrunch (TB )C/LW/RW46292352201156343125377223.20%2766614.49112170112234246.32%953517011.5600100520
7Ales HemskyCrunch (TB )LW/RW3225265116003041119377921.01%2362819.64109191240000084254.17%482219021.6201000222
8Tyler MotteCrunch (TB )C/LW/RW461730474240805993365518.28%2683818.243476280001254149.40%832027001.1201000051
9Kevin BieksaCrunch (TB )D468334139168100117628453379.52%83116525.345510869000149100.00%0661000.7000758014
10Carter RowneyCrunch (TB )C411221332755536958233220.69%1957013.920000150001543064.39%3961211001.1601001111
11Chris ButlerCrunch (TB )D463283134291565596220184.84%63104022.62358949011158000.00%01141000.6000012010
12Nikolai KuleminCrunch (TB )LW/RW311413271800384050174328.00%1756418.203256320000481247.22%361515000.9623000113
13Mitchell StephensCrunch (TB )C/LW/RW461310231175533173263717.81%954811.92000011011131053.04%1151415000.8400001120
14Brendan GuhleCrunch (TB )D4601515128033492917190.00%4779017.18044022000020000.00%0833000.3800000001
15Matt BartkowskiCrunch (TB )D3931114277540252771711.11%4063616.31101117000016000.00%0333000.4400001001
16Brandon DubinskyLightningC/LW/RW675123007132881525.00%211218.70213310000122065.26%9545012.1401000110
17Joshua WinquistCrunch (TB )LW4647115382035255121237.84%134138.99000010000100050.00%141410000.5300211001
18Jacob MacDonaldCrunch (TB )D460999954331241080.00%3766314.4301104000035000.00%0123000.2700001000
19Gabriel FontaineCrunch (TB )C23123-855171091211.11%41627.0400000000000052.00%7512000.3700001000
20Justin ScottCrunch (TB )C/RW7101275134111100.00%27711.100000000000000.00%223000.2600100000
Team Total or Average7582834587413984092251001877162761393617.39%5861325817.496610617210957022416496361761.26%26873474430121.12514131022323433
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Ville HussoCrunch (TB )2419400.9113.3214110078874462010.66732413301
2Craig AndersonCrunch (TB )1713220.8993.6910092062612325300.636111624000
3Oscar DanskCrunch (TB )55000.8954.003000020191103000.000057000
Team Total or Average4637620.9053.532721201601677890310.643144544301


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Ales HemskyCrunch (TB )LW/RW341984-07-14 7:21:32 PMNo185 Lbs6 ft0NoNoNo4UFAPro & Farm650,000$0$0$NoLink
Anders BjorkCrunch (TB )LW/RW221996-08-05Yes186 Lbs6 ft0NoNoNo3RFAPro & Farm500,000$0$0$NoLink
Blaine ByronCrunch (TB )C231995-02-21Yes172 Lbs6 ft0NoNoNo1RFAPro & Farm500,000$0$0$NoLink
Brendan GuhleCrunch (TB )D211997-07-29Yes186 Lbs6 ft1NoNoNo3RFAPro & Farm800,000$0$0$NoLink
Brian BoyleCrunch (TB )C/LW/RW331985-07-14 1:21:32 AMNo244 Lbs6 ft6NoNoNo2UFAPro & Farm2,000,000$0$0$NoLink
Carter RowneyCrunch (TB )C291989-05-10No200 Lbs6 ft2NoNoNo3UFAPro & Farm900,000$0$0$NoLink
Chris ButlerCrunch (TB )D311987-07-14 1:21:32 PMNo196 Lbs6 ft1NoNoNo4UFAPro & Farm650,000$0$0$NoLink
Cole UllyCrunch (TB )LW/RW231995-02-20No170 Lbs6 ft0NoNoNo1RFAPro & Farm500,000$0$0$NoLink
Collin DeliaCrunch (TB )G241994-06-20Yes190 Lbs6 ft2NoNoNo2RFAPro & Farm850,000$0$0$NoLink
Connor HobbsCrunch (TB )D221997-01-04Yes187 Lbs6 ft1NoNoNo3RFAPro & Farm500,000$0$0$NoLink
Craig AndersonCrunch (TB )G371981-07-14 1:21:33 AMNo187 Lbs6 ft2NoNoNo4UFAPro & Farm2,500,000$0$0$NoLink
Daniel SprongCrunch (TB )LW/RW211997-03-17No180 Lbs6 ft0NoNoNo1RFAPro & Farm800,000$0$0$NoLink
Dillon SimpsonCrunch (TB )D251993-02-10No194 Lbs6 ft2NoNoNo2RFAPro & Farm650,000$0$0$NoLink
Gabriel FontaineCrunch (TB )C211997-04-30Yes191 Lbs6 ft1NoNoNo3RFAPro & Farm500,000$0$0$NoLink
Gage QuinneyCrunch (TB )C/LW231995-07-29Yes201 Lbs5 ft11NoNoNo3RFAPro & Farm500,000$0$0$NoLink
Jacob MacDonaldCrunch (TB )D251993-02-26Yes201 Lbs6 ft0NoNoNo1RFAPro & Farm650,000$0$0$NoLink
Jaedon DescheneauCrunch (TB )C/RW231995-02-21Yes186 Lbs5 ft9NoNoNo2RFAPro & Farm500,000$0$0$NoLink
Jeremy GregoireCrunch (TB )C231995-09-04No193 Lbs6 ft0NoNoNo1RFAPro & Farm500,000$0$0$NoLink
Joshua WinquistCrunch (TB )LW251993-09-06No185 Lbs5 ft11NoNoNo2RFAPro & Farm650,000$0$0$NoLink
Justin ScottCrunch (TB )C/RW231995-08-13Yes202 Lbs6 ft1NoNoNo3RFAPro & Farm650,000$0$0$NoLink
Kevin BieksaCrunch (TB )D361982-07-14 7:21:32 AMNo200 Lbs6 ft1NoNoNo1UFAPro & Farm4,600,000$0$0$NoLink
Mason GeertsenCrunch (TB )D231995-04-18No215 Lbs6 ft4NoNoNo1RFAPro & Farm650,000$0$0$NoLink
Matt BartkowskiCrunch (TB )D291989-06-04No196 Lbs6 ft1NoNoNo4UFAPro & Farm650,000$0$0$NoLink
Matthew SpencerCrunch (TB )D211997-03-24Yes206 Lbs6 ft2NoNoNo3RFAPro & Farm850,000$0$0$NoLink
Mikhail GrabovskiCrunch (TB )C/LW/RW331985-07-14 1:21:32 AMNo183 Lbs5 ft11NoNoNo4UFAPro & Farm1,700,000$0$0$NoLink
Mitchell StephensCrunch (TB )C/LW/RW211997-02-05Yes191 Lbs6 ft0NoNoNo3RFAPro & Farm850,000$0$0$NoLink
Nick EllisCrunch (TB )G251994-01-17No180 Lbs6 ft1NoNoNo3RFAPro & Farm650,000$0$0$NoLink
Nikolai KuleminCrunch (TB )LW/RW321986-07-14No225 Lbs6 ft1NoNoNo2UFAPro & Farm3,100,000$0$0$NoLink
Oscar DanskCrunch (TB )G241994-02-28Yes195 Lbs6 ft3NoNoNo3RFAPro & Farm850,000$0$0$NoLink
Paul CareyCrunch (TB )C/LW/RW301988-09-24No198 Lbs6 ft1NoNoNo3UFAPro & Farm650,000$0$0$NoLink
Ryan CollinsCrunch (TB )D221996-05-06Yes216 Lbs6 ft5NoNoNo3RFAPro & Farm800,000$0$0$NoLink
Samuel GirardCrunch (TB )D201998-05-12Yes162 Lbs5 ft10NoNoNo3ELCPro & Farm800,000$0$0$NoLink
Shawn Ouellette-St. AmantCrunch (TB )LW/RW221996-11-18Yes192 Lbs6 ft0NoNoNo3RFAPro & Farm650,000$0$0$NoLink
Tyler MotteCrunch (TB )C/LW/RW231995-03-10No188 Lbs5 ft9NoNoNo2RFAPro & Farm500,000$0$0$NoLink
Ville HussoCrunch (TB )G231995-02-05No205 Lbs6 ft3NoNoNo2RFAPro & Farm650,000$0$0$NoLink
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
3525.49194 Lbs6 ft12.51962,857$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Tyler MotteBrian BoyleAnders Bjork40122
2Daniel SprongMikhail Grabovski30122
3Paul CareyMitchell Stephens20122
4Joshua WinquistGabriel FontaineMikhail Grabovski10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Kevin BieksaChris Butler40122
2Samuel GirardBrendan Guhle30122
3Matt BartkowskiJacob MacDonald20122
4Kevin BieksaChris Butler10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Brian BoyleMikhail Grabovski60122
2Daniel SprongTyler MotteAnders Bjork40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Kevin BieksaChris Butler60122
2Samuel GirardBrendan Guhle40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Mikhail GrabovskiBrian Boyle60122
2Tyler Motte40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Kevin BieksaChris Butler60122
2Samuel GirardBrendan Guhle40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Mikhail Grabovski60122Kevin BieksaChris Butler60122
2Brian Boyle40122Samuel GirardBrendan Guhle40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Mikhail GrabovskiBrian Boyle60122
2Tyler Motte40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Kevin BieksaChris Butler60122
2Samuel GirardBrendan Guhle40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Brian BoyleMikhail GrabovskiKevin BieksaChris Butler
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Brian BoyleMikhail GrabovskiKevin BieksaChris Butler
Extra Forwards
Normal PowerPlayPenalty Kill
, Paul Carey, Mitchell Stephens, Paul CareyMitchell Stephens
Extra Defensemen
Normal PowerPlayPenalty Kill
Matt Bartkowski, Jacob MacDonald, Samuel GirardMatt BartkowskiJacob MacDonald, Samuel Girard
Penalty Shots
Mikhail Grabovski, Brian Boyle, , Tyler Motte,
Goalie
#1 : , #2 :


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals11000000862110000008620000000000021.00081422006797119830470570586253924101722100.00%5260.00%048478361.81%629106659.01%54689161.28%997549925385859468
2Americans11000000826000000000001100000082621.0008122000679711984147057058625265527200.00%000.00%048478361.81%629106659.01%54689161.28%997549925385859468
3Bears6600000051213022000000169744000000351223121.00051851360067971198222470570586252689968117131076.92%14564.29%048478361.81%629106659.01%54689161.28%997549925385859468
4Bruins11000000523000000000001100000052321.000571200679711983847057058625318732000.00%10100.00%048478361.81%629106659.01%54689161.28%997549925385859468
5Checkers300010111110100000000000300010111110150.83311172800679711988947057058625110301255200.00%6183.33%048478361.81%629106659.01%54689161.28%997549925385859468
6Comets11000000761110000007610000000000021.0007101700679711984347057058625371722111100.00%110.00%048478361.81%629106659.01%54689161.28%997549925385859468
7Condors11000000642110000006420000000000021.00061117006797119843470570586253614122022100.00%10100.00%048478361.81%629106659.01%54689161.28%997549925385859468
8Devils2200000015872200000015870000000000041.00015243900679711987547057058625712093716956.25%20100.00%048478361.81%629106659.01%54689161.28%997549925385859468
9Falcons11000000844000000000001100000084421.000812200067971198284705705862544204521100.00%5260.00%048478361.81%629106659.01%54689161.28%997549925385859468
10Griffins11000000972110000009720000000000021.0009152400679711984247057058625411262422100.00%3166.67%048478361.81%629106659.01%54689161.28%997549925385859468
11Gulls1000000134-1000000000001000000134-110.500358006797119833470570586254015923100.00%20100.00%048478361.81%629106659.01%54689161.28%997549925385859468
12Marlies431000002318532100000161331100000075260.7502339620067971198144470570586251325216846116.67%8537.50%048478361.81%629106659.01%54689161.28%997549925385859468
13Monsters11000000954110000009540000000000021.000916250067971198384705705862538742677100.00%220.00%048478361.81%629106659.01%54689161.28%997549925385859468
14Moose311010001712531101000171250000000000040.66717244100679711981154705705862511649327211654.55%10100.00%048478361.81%629106659.01%54689161.28%997549925385859468
15Penguins31100010981210000107431010000024-240.6679142300679711987047057058625973225644125.00%50100.00%048478361.81%629106659.01%54689161.28%997549925385859468
16Phantoms2200000018992200000018990000000000041.0001833510067971198794705705862593349318675.00%220.00%048478361.81%629106659.01%54689161.28%997549925385859468
17Pirates3300000014591100000042222000000103761.0001420340067971198102470570586251002510718337.50%50100.00%048478361.81%629106659.01%54689161.28%997549925385859468
18Reign11000000945110000009450000000000021.0009152400679711984047057058625541211254375.00%30100.00%048478361.81%629106659.01%54689161.28%997549925385859468
19Senators3210000014951010000046-222000000103740.667142034106797119811247057058625843723747457.14%4250.00%248478361.81%629106659.01%54689161.28%997549925385859468
20Sound Tigers21100000880000000000002110000088020.50081422006797119898470570586251052810454250.00%5260.00%048478361.81%629106659.01%54689161.28%997549925385859468
21Stars11000000835000000000001100000083521.000812200067971198304705705862526618223133.33%4250.00%148478361.81%629106659.01%54689161.28%997549925385859468
Total463360302228817011823173020101511005123163010121377067780.8482884637511067971198163747057058625171959442110091136658.41%883065.91%348478361.81%629106659.01%54689161.28%997549925385859468
23Wild11000000725000000000001100000072521.000712190067971198294705705862524930252150.00%5260.00%048478361.81%629106659.01%54689161.28%997549925385859468
24Wolf Pack10001000651100010006510000000000021.00061016006797119833470570586253287243266.67%10100.00%048478361.81%629106659.01%54689161.28%997549925385859468
25Wolves1010000046-2000000000001010000046-200.0004711006797119825470570586254712193011100.00%2150.00%048478361.81%629106659.01%54689161.28%997549925385859468
26Wolves1100000011290000000000011000000112921.00011152600679711983847057058625281922223266.67%10100.00%048478361.81%629106659.01%54689161.28%997549925385859468
_Since Last GM Reset463360302228817011823173020101511005123163010121377067780.8482884637511067971198163747057058625171959442110091136658.41%883065.91%348478361.81%629106659.01%54689161.28%997549925385859468
_Vs Conference342350302119911782171130201010368351712201011964947570.83819931951810679711981218470570586251265427233733844452.38%541768.52%248478361.81%629106659.01%54689161.28%997549925385859468

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
4678W628846375116371719594421100910
All Games
GPWLOTWOTL SOWSOLGFGA
463363022288170
Home Games
GPWLOTWOTL SOWSOLGFGA
231732010151100
Visitor Games
GPWLOTWOTL SOWSOLGFGA
23163101213770
Last 10 Games
WLOTWOTL SOWSOL
910000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
1136658.41%883065.91%3
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
4705705862567971198
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
48478361.81%629106659.01%54689161.28%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
997549925385859468


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
2 - 2018-10-0313Crunch4Checkers3WXXBoxScore
4 - 2018-10-0526Marlies1Crunch5WBoxScore
6 - 2018-10-0740Pirates2Crunch4WBoxScore
7 - 2018-10-0851Crunch10Bears3WBoxScore
8 - 2018-10-0960Crunch5Sound Tigers6LBoxScore
11 - 2018-10-1286Moose4Crunch2LBoxScore
14 - 2018-10-15101Marlies7Crunch4LBoxScore
16 - 2018-10-17115Crunch7Bears4WBoxScore
18 - 2018-10-19131Crunch6Senators1WBoxScore
20 - 2018-10-21144Phantoms3Crunch9WBoxScore
23 - 2018-10-24164Moose6Crunch7WXBoxScore
25 - 2018-10-26180Crunch8Americans2WBoxScore
27 - 2018-10-28197Crunch3Sound Tigers2WBoxScore
28 - 2018-10-29203Crunch4Checkers5LXXBoxScore
30 - 2018-10-31216Bears3Crunch7WBoxScore
33 - 2018-11-03239Senators6Crunch4LBoxScore
35 - 2018-11-05253Crunch8Stars3WBoxScore
37 - 2018-11-07265Condors4Crunch6WBoxScore
39 - 2018-11-09278Crunch2Penguins4LBoxScore
41 - 2018-11-11297Reign4Crunch9WBoxScore
46 - 2018-11-16325Admirals6Crunch8WBoxScore
48 - 2018-11-18337Crunch9Bears2WBoxScore
51 - 2018-11-21353Monsters5Crunch9WBoxScore
53 - 2018-11-23370Crunch3Checkers2WXBoxScore
55 - 2018-11-25383Penguins2Crunch4WBoxScore
59 - 2018-11-29409Crunch7Wild2WBoxScore
60 - 2018-11-30418Marlies5Crunch7WBoxScore
63 - 2018-12-03440Crunch5Pirates2WBoxScore
64 - 2018-12-04449Devils3Crunch8WBoxScore
67 - 2018-12-07472Crunch5Pirates1WBoxScore
68 - 2018-12-08481Bears6Crunch9WBoxScore
71 - 2018-12-11498Crunch3Gulls4LXXBoxScore
72 - 2018-12-12510Devils5Crunch7WBoxScore
75 - 2018-12-15528Crunch7Marlies5WBoxScore
76 - 2018-12-16539Penguins2Crunch3WXXBoxScore
79 - 2018-12-19553Crunch9Bears3WBoxScore
81 - 2018-12-21568Moose2Crunch8WBoxScore
83 - 2018-12-23579Crunch8Falcons4WBoxScore
85 - 2018-12-25593Crunch5Bruins2WBoxScore
87 - 2018-12-27602Crunch4Wolves6LBoxScore
88 - 2018-12-28615Wolf Pack5Crunch6WXBoxScore
91 - 2018-12-31638Comets6Crunch7WBoxScore
93 - 2019-01-02650Crunch11Wolves2WBoxScore
94 - 2019-01-03660Crunch4Senators2WBoxScore
96 - 2019-01-05675Phantoms6Crunch9WBoxScore
100 - 2019-01-09700Griffins7Crunch9WBoxScore
104 - 2019-01-13721Crunch-Heat-
105 - 2019-01-14733Americans-Crunch-
108 - 2019-01-17750Crunch-Phantoms-
110 - 2019-01-19762Wolves-Crunch-
113 - 2019-01-22784Crunch-Phantoms-
114 - 2019-01-23795Sound Tigers-Crunch-
117 - 2019-01-26816Crunch-Moose-
118 - 2019-01-27825Marlies-Crunch-
121 - 2019-01-30839Crunch-Americans-
123 - 2019-02-01854Wolves-Crunch-
125 - 2019-02-03866Crunch-Marlies-
126 - 2019-02-04879Crunch-Rampage-
128 - 2019-02-06891IceHogs-Crunch-
131 - 2019-02-09912Crunch-Barracuda-
132 - 2019-02-10922Wolf Pack-Crunch-
135 - 2019-02-13938Crunch-Wolf Pack-
137 - 2019-02-15952Bruins-Crunch-
139 - 2019-02-17969Crunch-Moose-
140 - 2019-02-18980Crunch-Sound Tigers-
141 - 2019-02-19988Pirates-Crunch-
143 - 2019-02-211004Crunch-Devils-
Trade Deadline --- Trades can’t be done after this day is simulated!
146 - 2019-02-241020Sound Tigers-Crunch-
149 - 2019-02-271045Crunch-Admirals-
150 - 2019-02-281051Checkers-Crunch-
152 - 2019-03-021072Crunch-IceCaps-
154 - 2019-03-041081Pirates-Crunch-
157 - 2019-03-071099Crunch-IceCaps-
159 - 2019-03-091115Checkers-Crunch-
164 - 2019-03-141145IceCaps-Crunch-
169 - 2019-03-191173Bruins-Crunch-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
15 0 - 0.00% 0$0$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
1,972,407$ 3,370,000$ 3,233,750$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 1,958,077$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 69 19,708$ 1,359,852$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
2018463360302228817011823173020101511005123163010121377067782884637511067971198163747057058625171959442110091136658.41%883065.91%348478361.81%629106659.01%54689161.28%997549925385859468
Total Regular Season463360302228817011823173020101511005123163010121377067782884637511067971198163747057058625171959442110091136658.41%883065.91%348478361.81%629106659.01%54689161.28%997549925385859468