Phantoms

GP: 19 | W: 8 | L: 11 | OTL: 0 | P: 16
GF: 54 | GA: 58 | PP%: 55.26% | PK%: 30.77%
GM : Cam Baker | Morale : 50 | Team Overall : 58
Next Games vs Penguins
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Mark LetestuX100.007143957069649674906460847073746950680
2Chandler StephensonX100.006341957469629159566459812554546650630
3Eric TangradiX100.008283806583747666506167696444446850630
4Dominik SimonXX100.007643857364597966396962612547476650610
5Mikhail Vorobyev (R)X100.008176916576666859745756665344446250590
6Alexandre GrenierX100.007578696878808659254855635244446150580
7Jayce Hawryluk (R)XX100.006666666766687061766156595344446050580
8Blake PietilaXX100.007569886669717555504758635545456150570
9Matheson Iacopelli (R)XX100.008176936776636655694758655544446150570
10Matt HunwickX100.007756857569747458255250822572736450670
11Erik GustafssonX100.007343947174768072256556632554556650640
12Nate ProsserX100.007655896975636557255048792567686150640
13Carl DahlstromX100.006543996184748758256247752545456250630
14Klas DahlbeckX100.008766816978706054255148692561616050620
15Mark FraserX100.007883666383717846254141663963645250610
Scratches
1Jannik HansenXX100.007155897873626359567156682575796450630
2Brett BulmerXX100.00718064725964635468534959504545150550
3Tyler Moy (R)XX100.007971966271667150634747634544445650550
4Justin Kirkland (R)XX100.007568906468697550634747614544445550540
5Garrett MitchellX100.006568586168707550633956565344445650530
6Taylor ChorneyX100.007143897771614753255148752561626050620
7Andrei Mironov (R)X100.008445677273564652255550722544446150600
8Adam ClendeningX100.006670576770525449254140593855555150540
9Zac LeslieX100.007264896664616645253440583844445050540
10Reece ScarlettX100.006766696266657046253640563844444950530
11Sergey Zborovskiy (R)X100.007374726874495141252839583744444850520
TEAM AVERAGE100.00746381687266705644525167405252575059
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Richard Bachman100.00536075625254505751513048485350540
2Jean-Francois Berube100.00575352666549435861577847485650540
Scratches
1Michael Leighton100.00485468764549505449493044445050520
2Mac Carruth100.00475164754547505347483044444950510
TEAM AVERAGE100.0051556570525048565251424646525053
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Mark LetestuPhantoms (Phi)RW192123441195252698326821.43%1943322.834596180001150169.86%732414042.0300000301
2Dominik SimonPhantoms (Phi)C/LW19231841075253487336126.44%1240421.294487200001130148.08%2081812012.0300001203
3Chandler StephensonPhantoms (Phi)C19172441-900194362223027.42%1442622.46279422000092050.54%4591416021.9200000120
4Alexandre GrenierPhantoms (Phi)RW19131629-12315332081265116.05%1539020.55235420000001033.33%61610011.4900120011
5Eric TangradiPhantoms (Phi)LW19111526-12120292771153115.49%1744123.242577220004170050.62%81185001.1800000111
6Matt HunwickPhantoms (Phi)D1921618-311515272912206.90%3745824.14235930000020000.00%01017000.7800001101
7Nate ProsserPhantoms (Phi)D1921517-32018232322108.70%3646024.23134330000122000.00%0322000.7400000010
8Erik GustafssonPhantoms (Phi)D1921315-72015194316114.65%2135618.74202414000116000.00%0713000.8400000000
9Mikhail VorobyevPhantoms (Phi)C196915055303330121620.00%1128314.9311215000051054.78%11526001.0600100000
10Blake PietilaPhantoms (Phi)LW/RW198311-36021191941542.11%628414.9600003000073053.33%1509010.7700000011
11Jannik HansenPhantoms (Phi)LW/RW745912011121681025.00%1114220.34000060000300100.00%456001.2600000000
12Klas DahlbeckPhantoms (Phi)D19156-775272621494.76%2435218.57000114000015000.00%0117000.3400001000
13Carl DahlstromPhantoms (Phi)D19055-10001813960.00%2025113.2401100000000055.56%927000.4000000000
14Mark FraserPhantoms (Phi)D19011-1012104148120.00%51719.0000001000020045.45%1135000.1200011000
15Taylor ChorneyPhantoms (Phi)D3000-100240000.00%43511.670000000000000.00%001000.0000000000
16Andrei MironovPhantoms (Phi)D8000000450010.00%3496.240000000000000.00%003000.0000000000
Team Total or Average265110168278-551085027835060121634118.30%255494218.652032524621300081497252.09%981123163091.1200234868
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Richard BachmanPhantoms (Phi)31200.9482.3018300713492000.000033120
Team Total or Average31200.9482.3018300713492000.000033120


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers CONT StatusType Current Salary Salary Year 2 Salary Year 3 Salary Year 4 Salary Year 5 Salary Year 6 Salary Year 7 Salary Year 8 Salary Year 9 Salary Year 10 Link
Adam ClendeningPhantoms (Phi)D261992-10-25No196 Lbs6 ft0NoNoNo4RFAPro & Farm600,000$600,000$600,000$600,000$Link
Alexandre GrenierPhantoms (Phi)RW271991-09-04No200 Lbs6 ft5NoNoNo4RFAPro & Farm725,000$725,000$725,000$725,000$Link
Andrei MironovPhantoms (Phi)D241994-07-29Yes194 Lbs6 ft3NoNoNo1RFAPro & FarmLink
Blake PietilaPhantoms (Phi)LW/RW251993-02-20No200 Lbs5 ft11NoNoNo1RFAPro & Farm500,000$Link
Brett BulmerPhantoms (Phi)LW/RW251993-04-26No212 Lbs6 ft4NoNoNo1RFAPro & Farm870,000$Link
Carl DahlstromPhantoms (Phi)D231995-01-27No231 Lbs6 ft4NoNoNo2RFAPro & Farm800,000$800,000$Link
Chandler StephensonPhantoms (Phi)C241994-04-22No204 Lbs6 ft0NoNoNo4RFAPro & Farm875,000$875,000$875,000$875,000$Link
Dominik SimonPhantoms (Phi)C/LW241994-08-08No176 Lbs5 ft11NoNoNo1RFAPro & Farm500,000$Link
Eric TangradiPhantoms (Phi)LW281990-07-14 7:21:32 AMNo221 Lbs6 ft4NoNoNo1UFAPro & Farm650,000$Link
Erik GustafssonPhantoms (Phi)D261992-03-13No176 Lbs6 ft0NoNoNo4RFAPro & Farm1,200,000$1,200,000$1,200,000$1,200,000$Link
Garrett MitchellPhantoms (Phi)RW271991-02-09No198 Lbs5 ft11NoNoNo1RFAPro & Farm500,000$Link
Jannik HansenPhantoms (Phi)LW/RW311987-07-14 1:21:32 PMNo194 Lbs6 ft1NoNoNo3UFAPro & Farm650,000$650,000$650,000$Link
Jayce HawrylukPhantoms (Phi)C/RW221995-12-31Yes186 Lbs5 ft11NoNoNo2RFAPro & Farm850,000$850,000$Link
Jean-Francois BerubePhantoms (Phi)C271991-07-13No177 Lbs6 ft1NoNoNo1RFAPro & Farm500,000$Link
Justin KirklandPhantoms (Phi)C/LW221996-08-01Yes183 Lbs6 ft1NoNoNo2RFAPro & Farm750,000$750,000$Link
Klas DahlbeckPhantoms (Phi)D271991-07-06No207 Lbs6 ft3NoNoNo4RFAPro & Farm850,000$850,000$850,000$850,000$Link
Mac CarruthPhantoms (Phi)G261992-03-25No190 Lbs6 ft2NoNoNo1RFAPro & Farm500,000$Link
Mark FraserPhantoms (Phi)D311987-07-14 1:21:32 PMNo220 Lbs6 ft4NoNoNo1UFAPro & Farm600,000$Link
Mark LetestuPhantoms (Phi)RW321986-07-14 7:21:32 AMNo197 Lbs5 ft10NoNoNo4UFAPro & Farm1,800,000$1,800,000$1,800,000$1,800,000$Link
Matheson IacopelliPhantoms (Phi)LW/RW241994-05-15Yes207 Lbs6 ft2NoNoNo3RFAPro & Farm700,000$700,000$700,000$Link
Matt HunwickPhantoms (Phi)D321986-07-14 7:21:32 AMNo200 Lbs5 ft11NoNoNo3UFAPro & Farm2,250,000$2,250,000$2,250,000$Link
Michael LeightonPhantoms (Phi)C371981-05-18No186 Lbs6 ft3NoNoNo1UFAPro & Farm650,000$Link
Mikhail VorobyevPhantoms (Phi)C211997-01-05Yes207 Lbs6 ft2NoNoNo3RFAPro & Farm925,000$925,000$925,000$Link
Nate ProsserPhantoms (Phi)D311987-07-14 1:21:32 PMNo201 Lbs6 ft2NoNoNo4UFAPro & Farm650,000$650,000$650,000$650,000$Link
Reece ScarlettPhantoms (Phi)D251993-03-30No175 Lbs6 ft1NoNoNo4RFAPro & Farm650,000$650,000$650,000$650,000$Link
Richard BachmanPhantoms (Phi)D301988-07-25No183 Lbs5 ft10NoNoNo1UFAPro & Farm600,000$Link
Sergey ZborovskiyPhantoms (Phi)D211997-02-21Yes197 Lbs6 ft4NoNoNo3RFAPro & Farm700,000$700,000$700,000$Link
Taylor ChorneyPhantoms (Phi)D301988-07-14 7:21:32 PMNo191 Lbs6 ft0NoNoNo3UFAPro & Farm800,000$800,000$800,000$Link
Tyler MoyPhantoms (Phi)C/RW231995-07-18Yes201 Lbs6 ft1NoNoNo3RFAPro & Farm500,000$500,000$500,000$Link
Zac LesliePhantoms (Phi)D241994-01-30No174 Lbs6 ft0NoNoNo1RFAPro & Farm500,000$Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
3026.50196 Lbs6 ft12.37754,833$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Eric TangradiChandler StephensonMark Letestu40122
2Dominik SimonAlexandre Grenier30122
3Blake PietilaMikhail VorobyevMark Letestu20122
4Chandler StephensonEric Tangradi10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Matt HunwickNate Prosser40122
2Erik GustafssonKlas Dahlbeck30122
3Carl Dahlstrom20122
4Mark Fraser10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Eric TangradiChandler StephensonMark Letestu60122
2Dominik SimonAlexandre Grenier40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Matt HunwickNate Prosser60122
2Erik GustafssonKlas Dahlbeck40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Mark LetestuEric Tangradi60122
2Chandler Stephenson40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Matt HunwickNate Prosser60122
2Erik GustafssonKlas Dahlbeck40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Mark Letestu60122Matt HunwickNate Prosser60122
2Eric Tangradi40122Erik GustafssonKlas Dahlbeck40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Mark LetestuEric Tangradi60122
2Chandler Stephenson40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Matt HunwickNate Prosser60122
2Erik GustafssonKlas Dahlbeck40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Eric TangradiChandler StephensonMark LetestuMatt HunwickNate Prosser
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Eric TangradiChandler StephensonMark LetestuMatt HunwickNate Prosser
Extra Forwards
Normal PowerPlayPenalty Kill
Mikhail Vorobyev, Blake Pietila, Dominik SimonMikhail Vorobyev, Blake PietilaDominik Simon
Extra Defensemen
Normal PowerPlayPenalty Kill
Carl Dahlstrom, , Mark FraserCarl Dahlstrom, Mark Fraser
Penalty Shots
Mark Letestu, Eric Tangradi, Chandler Stephenson, , Dominik Simon
Goalie
#1 : , #2 :


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Americans11000000752110000007520000000000021.00079160018474432514823423114234614200.00%3233.33%015728355.48%16329555.25%19841547.71%383204394165373200
2Barracuda1010000059-41010000059-40000000000000.000551000184744323148234231144010016000.00%000.00%015728355.48%16329555.25%19841547.71%383204394165373200
3Bears1010000069-31010000069-30000000000000.00068140018474433414823423114572021022100.00%110.00%015728355.48%16329555.25%19841547.71%383204394165373200
4Bruins1010000013-2000000000001010000013-200.00011200184744318148234231145218412200.00%20100.00%015728355.48%16329555.25%19841547.71%383204394165373200
5Checkers21100000910-121100000910-10000000000020.50091524001847443551482342311469340423133.33%000.00%015728355.48%16329555.25%19841547.71%383204394165373200
6Crunch1010000039-6000000000001010000039-600.00035800184744335148234231143417132011100.00%4250.00%015728355.48%16329555.25%19841547.71%383204394165373200
7Devils3120000027270211000001816210100000911-220.333274774001847443113148234231141323224708787.50%8712.50%015728355.48%16329555.25%19841547.71%383204394165373200
8Heat10100000911-20000000000010100000911-200.0009152410184744350148234231145220410100.00%220.00%015728355.48%16329555.25%19841547.71%383204394165373200
9IceHogs10001000871100010008710000000000021.00081422001847443361482342311446125174375.00%000.00%015728355.48%16329555.25%19841547.71%383204394165373200
10Monsters1100000011560000000000011000000115621.0001118290018474435214823423114321010164250.00%5260.00%015728355.48%16329555.25%19841547.71%383204394165373200
11Penguins211000007521010000012-11100000063320.500710170018474435114823423114722216324250.00%3233.33%015728355.48%16329555.25%19841547.71%383204394165373200
12Pirates10001000651000000000001000100065121.000612180018474434314823423114381021222100.00%10100.00%015728355.48%16329555.25%19841547.71%383204394165373200
13Senators1010000049-5000000000001010000049-500.000471100184744334148234231143715221200.00%110.00%015728355.48%16329555.25%19841547.71%383204394165373200
Since Last GM Reset1951103000112130-18935010005458-41026020005872-14160.42111217929110184744362714823423114777271122314382155.26%392730.77%015728355.48%16329555.25%19841547.71%383204394165373200
15Sound Tigers10100000614-80000000000010100000614-800.00067130018474433514823423114572734143133.33%9811.11%015728355.48%16329555.25%19841547.71%383204394165373200
Total1951103000112130-18935010005458-41026020005872-14160.42111217929110184744362714823423114777271122314382155.26%392730.77%015728355.48%16329555.25%19841547.71%383204394165373200
Vs Conference1549020007998-19734000004142-1815020003856-18120.4007912720600184744346614823423114607219103255291655.17%322328.13%015728355.48%16329555.25%19841547.71%383204394165373200
Vs Division1124010006972-3612000003437-3512010003535060.273691111800018474433631482342311445516586192241562.50%262023.08%015728355.48%16329555.25%19841547.71%383204394165373200
19Wolf Pack10001000321000000000001000100032121.0003690018474432314823423114362008000.00%000.00%015728355.48%16329555.25%19841547.71%383204394165373200

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
1916L111217929162777727112231410
All Games
GPWLOTWOTL SOWSOLGFGA
195113000112130
Home Games
GPWLOTWOTL SOWSOLGFGA
93510005458
Visitor Games
GPWLOTWOTL SOWSOLGFGA
102620005872
Last 10 Games
WLOTWOTL SOWSOL
550000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
382155.26%392730.77%0
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
148234231141847443
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
15728355.48%16329555.25%19841547.71%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
383204394165373200


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
2 - 2018-10-0315Penguins2Phantoms1LBoxScore
4 - 2018-10-0524Phantoms1Bruins3LBoxScore
6 - 2018-10-0736Phantoms3Wolf Pack2WXBoxScore
8 - 2018-10-0957Checkers5Phantoms2LBoxScore
9 - 2018-10-1069Americans5Phantoms7WBoxScore
11 - 2018-10-1280Phantoms6Sound Tigers14LBoxScore
14 - 2018-10-15102Bears9Phantoms6LBoxScore
16 - 2018-10-17116Phantoms9Devils11LBoxScore
18 - 2018-10-19132Checkers5Phantoms7WBoxScore
20 - 2018-10-21144Phantoms3Crunch9LBoxScore
23 - 2018-10-24168Devils7Phantoms11WBoxScore
25 - 2018-10-26179Phantoms6Penguins3WBoxScore
27 - 2018-10-28194Phantoms4Senators9LBoxScore
28 - 2018-10-29207Barracuda9Phantoms5LBoxScore
31 - 2018-11-01225Phantoms6Pirates5WXBoxScore
33 - 2018-11-03237Devils9Phantoms7LBoxScore
36 - 2018-11-06259Phantoms11Monsters5WBoxScore
37 - 2018-11-07271IceHogs7Phantoms8WXBoxScore
40 - 2018-11-10288Phantoms9Heat11LBoxScore
42 - 2018-11-12299Sound Tigers-Phantoms-
45 - 2018-11-15317Phantoms-Senators-
47 - 2018-11-17332Senators-Phantoms-
50 - 2018-11-20351Griffins-Phantoms-
52 - 2018-11-22360Phantoms-Wolf Pack-
54 - 2018-11-24382Phantoms-Reign-
56 - 2018-11-26391Marlies-Phantoms-
58 - 2018-11-28404Phantoms-Americans-
60 - 2018-11-30419Moose-Phantoms-
63 - 2018-12-03442Phantoms-IceCaps-
65 - 2018-12-05453IceCaps-Phantoms-
67 - 2018-12-07475Marlies-Phantoms-
69 - 2018-12-09488Phantoms-Devils-
71 - 2018-12-11502Phantoms-Pirates-
73 - 2018-12-13514Wolves-Phantoms-
75 - 2018-12-15534Phantoms-Wild-
77 - 2018-12-17540Phantoms-IceCaps-
78 - 2018-12-18552Barracuda-Phantoms-
81 - 2018-12-21570Phantoms-Sound Tigers-
84 - 2018-12-24585Sound Tigers-Phantoms-
87 - 2018-12-27606Stars-Phantoms-
89 - 2018-12-29621Phantoms-Americans-
91 - 2018-12-31635Americans-Phantoms-
94 - 2019-01-03661Bears-Phantoms-
96 - 2019-01-05675Phantoms-Crunch-
100 - 2019-01-09696Bruins-Phantoms-
103 - 2019-01-12718Falcons-Phantoms-
105 - 2019-01-14729Phantoms-Wolves-
108 - 2019-01-17750Crunch-Phantoms-
110 - 2019-01-19765Phantoms-Penguins-
113 - 2019-01-22784Crunch-Phantoms-
115 - 2019-01-24801Phantoms-Sound Tigers-
117 - 2019-01-26811Admirals-Phantoms-
118 - 2019-01-27826Phantoms-Comets-
122 - 2019-01-31848Gulls-Phantoms-
126 - 2019-02-04875Pirates-Phantoms-
128 - 2019-02-06887Phantoms-Devils-
130 - 2019-02-08903Checkers-Phantoms-
132 - 2019-02-10920Phantoms-Bears-
133 - 2019-02-11927Phantoms-Marlies-
135 - 2019-02-13939Penguins-Phantoms-
138 - 2019-02-16964Phantoms-Wolf Pack-
139 - 2019-02-17968Phantoms-Bruins-
140 - 2019-02-18979Bears-Phantoms-
143 - 2019-02-211002Rampage-Phantoms-
Trade Deadline --- Trades can’t be done after this day is simulated!
145 - 2019-02-231018Phantoms-Marlies-
147 - 2019-02-251029Rampage-Phantoms-
151 - 2019-03-011058Penguins-Phantoms-
152 - 2019-03-021069Phantoms-Comets-
154 - 2019-03-041079Phantoms-Bears-
155 - 2019-03-051090Phantoms-Bruins-
156 - 2019-03-061096Phantoms-Moose-
158 - 2019-03-081107Wolf Pack-Phantoms-
161 - 2019-03-111125Phantoms-Checkers-
163 - 2019-03-131139Condors-Phantoms-
165 - 2019-03-151153Phantoms-Moose-
168 - 2019-03-181167Wolf Pack-Phantoms-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
29 0 - 0.00% 0$0$3000100

Expenses
Players Total SalariesPlayers Total Average SalariesCoaches Salaries
2,264,500$ 2,061,700$ 0$
Year To Date ExpensesSalary Cap Per DaysSalary Cap To Date
535,651$ 0$ 531,411$

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 130 13,243$ 1,721,590$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
20181951103000112130-18935010005458-41026020005872-141611217929110184744362714823423114777271122314382155.26%392730.77%015728355.48%16329555.25%19841547.71%383204394165373200
Total Regular Season1951103000112130-18935010005458-41026020005872-141611217929110184744362714823423114777271122314382155.26%392730.77%015728355.48%16329555.25%19841547.71%383204394165373200