Phantoms

GP: 45 | W: 21 | L: 24 | OTL: 0 | P: 42
GF: 286 | GA: 325 | PP%: 60.58% | PK%: 31.73%
GM : Cam Baker | Morale : 50 | Team Overall : 58
Next Games #718 vs Falcons
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Chandler StephensonX100.006341957469629159566459812554546650630
2Jannik HansenXX100.007155897873626359567156682575796450630
3Dominik SimonXX100.007643857364597966396962612547476650610
4Mikhail Vorobyev (R)X100.008176916576666859745756665344446250590
5Alexandre GrenierX100.007578696878808659254855635244446150580
6Jayce Hawryluk (R)XX100.006666666766687061766156595344446050580
7Blake PietilaXX100.007569886669717555504758635545456150570
8Matheson Iacopelli (R)XX100.008176936776636655694758655544446150570
9Matt HunwickX100.007756857569747458255250822572736450670
10Erik GustafssonX100.007343947174768072256556632554556650640
11Nate ProsserX100.007655896975636557255048792567686150640
12Carl DahlstromX100.006543996184748758256247752545456250630
13Taylor ChorneyX100.007143897771614753255148752561626050620
14Klas DahlbeckX100.008766816978706054255148692561616050620
15Mark FraserX100.007883666383717846254141663963645250610
16Andrei Mironov (R)X100.008445677273564652255550722544446150600
Scratches
1Eric TangradiX80.698283806583747666506167696444446850630
2Brett BulmerXX100.00718064725964635468534959504545150550
3Tyler Moy (R)XX100.007971966271667150634747634544445650550
4Justin Kirkland (R)XX100.007568906468697550634747614544445550540
5Garrett MitchellX100.006568586168707550633956565344445650530
6Adam ClendeningX100.006670576770525449254140593855555150540
7Zac LeslieX100.007264896664616645253440583844445050540
8Reece ScarlettX100.006766696266657046253640563844444950530
9Sergey Zborovskiy (R)X100.007374726874495141252839583744444850520
TEAM AVERAGE99.23746381687266695542515166395151575059
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Richard Bachman100.00536075625254505751513048485350540
2Jean-Francois Berube100.00575352666549435861577847485650540
Scratches
1Michael Leighton100.00485468764549505449493044445050520
2Mac Carruth100.00475164754547505347483044444950510
TEAM AVERAGE100.0051556570525048565251424646525053
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Chandler StephensonPhantoms (Phi)C454369112-210050931846111023.37%38102122.69720279530110214150.62%11285238042.1900000633
2Dominik SimonPhantoms (Phi)C/LW45565411099555642658317321.13%2794821.079132215520111293145.05%4955330042.3200001644
3Mark LetestuFlyersRW39504696-1321553722166313923.15%4691823.5511102113440002510172.78%1695731062.0900000523
4Alexandre GrenierPhantoms (Phi)RW453653896552586402237714116.14%2392020.45810181254000003131.58%193622021.9300140253
5Eric TangradiPhantoms (Phi)LW40273966-274956354152317317.76%3691022.775121710480004451049.73%1854219011.4500001221
6Nate ProsserPhantoms (Phi)D4544246-139540607344325.48%70108924.2121012671101265000.00%01241000.8400010010
7Matt HunwickPhantoms (Phi)D4573845-13271555679234397.61%81108024.0276131772011161000.00%02246000.8300012103
8Erik GustafssonPhantoms (Phi)D4563137-3220413310038316.00%5283118.4859141242000345100.00%01228000.8900000010
9Mikhail VorobyevPhantoms (Phi)C45161733-1175556088294618.18%2162913.993254120000103057.47%3081717001.0500100101
10Blake PietilaPhantoms (Phi)LW/RW45111122-14195463755133220.00%1461913.76022080000143058.06%31615010.7100001011
11Carl DahlstromPhantoms (Phi)D452121412005293915195.13%4156812.6301103000000046.15%13416000.4900000010
12Klas DahlbeckPhantoms (Phi)D4521214-3121555495112183.92%6882718.38112442000143100.00%0238000.3400001000
13Jannik HansenPhantoms (Phi)LW/RW745912011121681025.00%1114220.34000060000300100.00%456001.2600000000
14Mark FraserPhantoms (Phi)D45044-122210141916350.00%173618.0400003000040043.75%1668000.2200011000
15Taylor ChorneyPhantoms (Phi)D3000-100240000.00%43511.670000000000000.00%001000.0000000000
16Andrei MironovPhantoms (Phi)D8000000450010.00%3496.240000000000000.00%003000.0000000000
Team Total or Average592264433697-16024385635698157051186916.82%5521095418.5058961541025191341439619451.82%23683263590181.2700277232019
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Richard BachmanPhantoms (Phi)31200.9482.3018300713492000.000033120
Team Total or Average31200.9482.3018300713492000.000033120


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Adam ClendeningPhantoms (Phi)D261992-10-25No196 Lbs6 ft0NoNoNo4RFAPro & Farm600,000$0$0$NoLink
Alexandre GrenierPhantoms (Phi)RW271991-09-04No200 Lbs6 ft5NoNoNo4RFAPro & Farm725,000$0$0$NoLink
Andrei MironovPhantoms (Phi)D241994-07-29Yes194 Lbs6 ft3NoNoNo1RFAPro & Farm0$0$NoLink
Blake PietilaPhantoms (Phi)LW/RW251993-02-20No200 Lbs5 ft11NoNoNo1RFAPro & Farm500,000$0$0$NoLink
Brett BulmerPhantoms (Phi)LW/RW251993-04-26No212 Lbs6 ft4NoNoNo1RFAPro & Farm870,000$0$0$NoLink
Carl DahlstromPhantoms (Phi)D231995-01-27No231 Lbs6 ft4NoNoNo2RFAPro & Farm800,000$0$0$NoLink
Chandler StephensonPhantoms (Phi)C241994-04-22No204 Lbs6 ft0NoNoNo4RFAPro & Farm875,000$0$0$NoLink
Dominik SimonPhantoms (Phi)C/LW241994-08-08No176 Lbs5 ft11NoNoNo1RFAPro & Farm500,000$0$0$NoLink
Eric Tangradi (Out of Payroll)Phantoms (Phi)LW281990-07-14 7:21:32 AMNo221 Lbs6 ft4NoNoNo1UFAPro & Farm650,000$0$0$YesLink
Erik GustafssonPhantoms (Phi)D261992-03-13No176 Lbs6 ft0NoNoNo4RFAPro & Farm1,200,000$0$0$NoLink
Garrett MitchellPhantoms (Phi)RW271991-02-09No198 Lbs5 ft11NoNoNo1RFAPro & Farm500,000$0$0$NoLink
Jannik HansenPhantoms (Phi)LW/RW311987-07-14 1:21:32 PMNo194 Lbs6 ft1NoNoNo3UFAPro & Farm650,000$0$0$NoLink
Jayce HawrylukPhantoms (Phi)C/RW231995-12-31Yes186 Lbs5 ft11NoNoNo2RFAPro & Farm850,000$0$0$NoLink
Jean-Francois BerubePhantoms (Phi)G271991-07-13No177 Lbs6 ft1NoNoNo1RFAPro & Farm500,000$0$0$NoLink
Justin KirklandPhantoms (Phi)C/LW221996-08-01Yes183 Lbs6 ft1NoNoNo2RFAPro & Farm750,000$0$0$NoLink
Klas DahlbeckPhantoms (Phi)D271991-07-06No207 Lbs6 ft3NoNoNo4RFAPro & Farm850,000$0$0$NoLink
Mac CarruthPhantoms (Phi)G261992-03-25No190 Lbs6 ft2NoNoNo1RFAPro & Farm500,000$0$0$NoLink
Mark FraserPhantoms (Phi)D311987-07-14 1:21:32 PMNo220 Lbs6 ft4NoNoNo1UFAPro & Farm600,000$0$0$NoLink
Matheson IacopelliPhantoms (Phi)LW/RW241994-05-15Yes207 Lbs6 ft2NoNoNo3RFAPro & Farm700,000$0$0$NoLink
Matt HunwickPhantoms (Phi)D321986-07-14 7:21:32 AMNo200 Lbs5 ft11NoNoNo3UFAPro & Farm2,250,000$0$0$NoLink
Michael LeightonPhantoms (Phi)G371981-05-18No186 Lbs6 ft3NoNoNo1UFAPro & Farm650,000$0$0$NoLink
Mikhail VorobyevPhantoms (Phi)C221997-01-05Yes207 Lbs6 ft2NoNoNo3RFAPro & Farm925,000$0$0$NoLink
Nate ProsserPhantoms (Phi)D311987-07-14 1:21:32 PMNo201 Lbs6 ft2NoNoNo4UFAPro & Farm650,000$0$0$NoLink
Reece ScarlettPhantoms (Phi)D251993-03-30No175 Lbs6 ft1NoNoNo4RFAPro & Farm650,000$0$0$NoLink
Richard BachmanPhantoms (Phi)G301988-07-25No183 Lbs5 ft10NoNoNo1UFAPro & Farm600,000$0$0$NoLink
Sergey ZborovskiyPhantoms (Phi)D211997-02-21Yes197 Lbs6 ft4NoNoNo3RFAPro & Farm700,000$0$0$NoLink
Taylor ChorneyPhantoms (Phi)D301988-07-14 7:21:32 PMNo191 Lbs6 ft0NoNoNo3UFAPro & Farm800,000$0$0$NoLink
Tyler MoyPhantoms (Phi)C/RW231995-07-18Yes201 Lbs6 ft1NoNoNo3RFAPro & Farm500,000$0$0$NoLink
Zac LesliePhantoms (Phi)D241994-01-30No174 Lbs6 ft0NoNoNo1RFAPro & Farm500,000$0$0$NoLink
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2926.38196 Lbs6 ft12.31718,793$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Chandler Stephenson40122
2Dominik SimonAlexandre Grenier30122
3Blake PietilaMikhail Vorobyev20122
4Chandler Stephenson10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Matt HunwickNate Prosser40122
2Erik GustafssonKlas Dahlbeck30122
3Carl Dahlstrom20122
4Mark Fraser10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Chandler Stephenson60122
2Dominik SimonAlexandre Grenier40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Matt HunwickNate Prosser60122
2Erik GustafssonKlas Dahlbeck40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
160122
2Chandler Stephenson40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Matt HunwickNate Prosser60122
2Erik GustafssonKlas Dahlbeck40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
160122Matt HunwickNate Prosser60122
240122Erik GustafssonKlas Dahlbeck40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
160122
2Chandler Stephenson40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Matt HunwickNate Prosser60122
2Erik GustafssonKlas Dahlbeck40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Chandler StephensonMatt HunwickNate Prosser
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Chandler StephensonMatt HunwickNate Prosser
Extra Forwards
Normal PowerPlayPenalty Kill
Mikhail Vorobyev, Blake Pietila, Dominik SimonMikhail Vorobyev, Blake PietilaDominik Simon
Extra Defensemen
Normal PowerPlayPenalty Kill
Carl Dahlstrom, , Mark FraserCarl Dahlstrom, Mark Fraser
Penalty Shots
, , Chandler Stephenson, , Dominik Simon
Goalie
#1 : , #2 :


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Americans422000002426-222000000159620200000917-840.50024376100671101054167481583587201363340637342.86%10550.00%037873551.43%36468852.91%520103650.19%951539926372836445
2Barracuda20200000819-1120200000819-110000000000000.0008101800671101054624815835872087244333266.67%220.00%037873551.43%36468852.91%520103650.19%951539926372836445
3Bears211000001513221100000151320000000000020.500152237006711010548148158358720103419337685.71%220.00%037873551.43%36468852.91%520103650.19%951539926372836445
4Bruins20200000514-910100000411-71010000013-200.0005914006711010546648158358720943421323133.33%8537.50%037873551.43%36468852.91%520103650.19%951539926372836445
5Checkers21100000910-121100000910-10000000000020.5009152400671101054554815835872069340423133.33%000.00%037873551.43%36468852.91%520103650.19%951539926372836445
6Crunch20200000918-90000000000020200000918-900.000915240067110105493481583587207940213722100.00%8625.00%037873551.43%36468852.91%520103650.19%951539926372836445
7Devils42200000363422110000018162211000001818040.500366399006711010541534815835872016941289111872.73%10910.00%037873551.43%36468852.91%520103650.19%951539926372836445
8Griffins1100000011741100000011740000000000021.00011193000671101054444815835872038181320000.00%4250.00%037873551.43%36468852.91%520103650.19%951539926372836445
9Heat10100000911-20000000000010100000911-200.000915241067110105450481583587205220410100.00%220.00%037873551.43%36468852.91%520103650.19%951539926372836445
10IceCaps32100000191631010000046-2220000001510540.6671932510067110105411048158358720892814518675.00%7271.43%037873551.43%36468852.91%520103650.19%951539926372836445
11IceHogs10001000871100010008710000000000021.0008142200671101054364815835872046125174375.00%000.00%037873551.43%36468852.91%520103650.19%951539926372836445
12Marlies211000001412221100000141220000000000020.500142438106711010547248158358720864210334250.00%5420.00%037873551.43%36468852.91%520103650.19%951539926372836445
13Monsters1100000011560000000000011000000115621.000111829006711010545248158358720321010164250.00%5260.00%037873551.43%36468852.91%520103650.19%951539926372836445
14Moose11000000761110000007610000000000021.00071320006711010543848158358720341613235240.00%4325.00%037873551.43%36468852.91%520103650.19%951539926372836445
15Penguins211000007521010000012-11100000063320.50071017006711010545148158358720722216324250.00%3233.33%037873551.43%36468852.91%520103650.19%951539926372836445
16Pirates201010001314-100000000000201010001314-120.500132538006711010547948158358720741910266466.67%5260.00%037873551.43%36468852.91%520103650.19%951539926372836445
17Reign10100000211-90000000000010100000211-900.000246006711010542448158358720502099200.00%220.00%037873551.43%36468852.91%520103650.19%951539926372836445
18Senators303000001123-121010000057-220200000616-1000.0001117280067110105410248158358720115406565120.00%3233.33%037873551.43%36468852.91%520103650.19%951539926372836445
19Sound Tigers422000003645-9211000001820-2211000001825-740.5003660960067110105415948158358720206794875141071.43%171417.65%237873551.43%36468852.91%520103650.19%951539926372836445
20Stars10001000651100010006510000000000021.000611170067110105449481583587203184164250.00%220.00%037873551.43%36468852.91%520103650.19%951539926372836445
Total45172404000286325-3923101102000152158-62271302000134167-33420.4672864787642067110105416714815835872018146362957731046360.58%1047131.73%237873551.43%36468852.91%520103650.19%951539926372836445
22Wild1010000046-2000000000001010000046-200.000471100671101054214815835872021421811100.00%10100.00%037873551.43%36468852.91%520103650.19%951539926372836445
23Wolf Pack210010001310300000000000210010001310341.000132336006711010546548158358720743122244100.00%10100.00%037873551.43%36468852.91%520103650.19%951539926372836445
24Wolves11000000981110000009810000000000021.0009152400671101054424815835872057206182150.00%330.00%037873551.43%36468852.91%520103650.19%951539926372836445
_Since Last GM Reset45172404000286325-3923101102000152158-62271302000134167-33420.4672864787642067110105416714815835872018146362957731046360.58%1047131.73%237873551.43%36468852.91%520103650.19%951539926372836445
_Vs Conference35141902000218246-28178900000110112-21861002000108134-26320.457218365583106711010541291481583587201400500238616835262.65%835632.53%237873551.43%36468852.91%520103650.19%951539926372836445
_Vs Division176501000127122592300000616108420100066615140.4121272113380067110105461648158358720725258113311473370.21%382923.68%237873551.43%36468852.91%520103650.19%951539926372836445

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
4542L22864787641671181463629577320
All Games
GPWLOTWOTL SOWSOLGFGA
4517244000286325
Home Games
GPWLOTWOTL SOWSOLGFGA
2310112000152158
Visitor Games
GPWLOTWOTL SOWSOLGFGA
227132000134167
Last 10 Games
WLOTWOTL SOWSOL
640000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
1046360.58%1047131.73%2
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
48158358720671101054
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
37873551.43%36468852.91%520103650.19%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
951539926372836445


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
2 - 2018-10-0315Penguins2Phantoms1LBoxScore
4 - 2018-10-0524Phantoms1Bruins3LBoxScore
6 - 2018-10-0736Phantoms3Wolf Pack2WXBoxScore
8 - 2018-10-0957Checkers5Phantoms2LBoxScore
9 - 2018-10-1069Americans5Phantoms7WBoxScore
11 - 2018-10-1280Phantoms6Sound Tigers14LBoxScore
14 - 2018-10-15102Bears9Phantoms6LBoxScore
16 - 2018-10-17116Phantoms9Devils11LBoxScore
18 - 2018-10-19132Checkers5Phantoms7WBoxScore
20 - 2018-10-21144Phantoms3Crunch9LBoxScore
23 - 2018-10-24168Devils7Phantoms11WBoxScore
25 - 2018-10-26179Phantoms6Penguins3WBoxScore
27 - 2018-10-28194Phantoms4Senators9LBoxScore
28 - 2018-10-29207Barracuda9Phantoms5LBoxScore
31 - 2018-11-01225Phantoms6Pirates5WXBoxScore
33 - 2018-11-03237Devils9Phantoms7LBoxScore
36 - 2018-11-06259Phantoms11Monsters5WBoxScore
37 - 2018-11-07271IceHogs7Phantoms8WXBoxScore
40 - 2018-11-10288Phantoms9Heat11LBoxScore
42 - 2018-11-12299Sound Tigers10Phantoms6LBoxScore
45 - 2018-11-15317Phantoms2Senators7LBoxScore
47 - 2018-11-17332Senators7Phantoms5LBoxScore
50 - 2018-11-20351Griffins7Phantoms11WBoxScore
52 - 2018-11-22360Phantoms10Wolf Pack8WBoxScore
54 - 2018-11-24382Phantoms2Reign11LBoxScore
56 - 2018-11-26391Marlies2Phantoms6WBoxScore
58 - 2018-11-28404Phantoms2Americans8LBoxScore
60 - 2018-11-30419Moose6Phantoms7WBoxScore
63 - 2018-12-03442Phantoms6IceCaps4WBoxScore
65 - 2018-12-05453IceCaps6Phantoms4LBoxScore
67 - 2018-12-07475Marlies10Phantoms8LBoxScore
69 - 2018-12-09488Phantoms9Devils7WBoxScore
71 - 2018-12-11502Phantoms7Pirates9LBoxScore
73 - 2018-12-13514Wolves8Phantoms9WBoxScore
75 - 2018-12-15534Phantoms4Wild6LBoxScore
77 - 2018-12-17540Phantoms9IceCaps6WBoxScore
78 - 2018-12-18552Barracuda10Phantoms3LBoxScore
81 - 2018-12-21570Phantoms12Sound Tigers11WBoxScore
84 - 2018-12-24585Sound Tigers10Phantoms12WBoxScore
87 - 2018-12-27606Stars5Phantoms6WXBoxScore
89 - 2018-12-29621Phantoms7Americans9LBoxScore
91 - 2018-12-31635Americans4Phantoms8WBoxScore
94 - 2019-01-03661Bears4Phantoms9WBoxScore
96 - 2019-01-05675Phantoms6Crunch9LBoxScore
100 - 2019-01-09696Bruins11Phantoms4LBoxScore
103 - 2019-01-12718Falcons-Phantoms-
105 - 2019-01-14729Phantoms-Wolves-
108 - 2019-01-17750Crunch-Phantoms-
110 - 2019-01-19765Phantoms-Penguins-
113 - 2019-01-22784Crunch-Phantoms-
115 - 2019-01-24801Phantoms-Sound Tigers-
117 - 2019-01-26811Admirals-Phantoms-
118 - 2019-01-27826Phantoms-Comets-
122 - 2019-01-31848Gulls-Phantoms-
126 - 2019-02-04875Pirates-Phantoms-
128 - 2019-02-06887Phantoms-Devils-
130 - 2019-02-08903Checkers-Phantoms-
132 - 2019-02-10920Phantoms-Bears-
133 - 2019-02-11927Phantoms-Marlies-
135 - 2019-02-13939Penguins-Phantoms-
138 - 2019-02-16964Phantoms-Wolf Pack-
139 - 2019-02-17968Phantoms-Bruins-
140 - 2019-02-18979Bears-Phantoms-
143 - 2019-02-211002Rampage-Phantoms-
Trade Deadline --- Trades can’t be done after this day is simulated!
145 - 2019-02-231018Phantoms-Marlies-
147 - 2019-02-251029Rampage-Phantoms-
151 - 2019-03-011058Penguins-Phantoms-
152 - 2019-03-021069Phantoms-Comets-
154 - 2019-03-041079Phantoms-Bears-
155 - 2019-03-051090Phantoms-Bruins-
156 - 2019-03-061096Phantoms-Moose-
158 - 2019-03-081107Wolf Pack-Phantoms-
161 - 2019-03-111125Phantoms-Checkers-
163 - 2019-03-131139Condors-Phantoms-
165 - 2019-03-151153Phantoms-Moose-
168 - 2019-03-181167Wolf Pack-Phantoms-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
15 0 - 0.00% 0$0$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
1,318,440$ 2,019,500$ 1,816,700$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 1,314,200$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 69 11,810$ 814,890$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
201845172404000286325-3923101102000152158-62271302000134167-33422864787642067110105416714815835872018146362957731046360.58%1047131.73%237873551.43%36468852.91%520103650.19%951539926372836445
Total Regular Season45172404000286325-3923101102000152158-62271302000134167-33422864787642067110105416714815835872018146362957731046360.58%1047131.73%237873551.43%36468852.91%520103650.19%951539926372836445