´╗┐

Senators

GP: 20 | W: 16 | L: 4 | OTL: 0 | P: 32
GF: 107 | GA: 69 | PP%: 34.69% | PK%: 69.23%
GM : Mika Laakso | Morale : 50 | Team Overall : 57
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Dominic TurgeonX100.007873896673828858735358655544446350600
2Jonny BrodzinskiXX100.007544947373546657375660602547476250580
3Dryden HuntX100.008545936771578358335955602545456250580
4Jack RodewaldX100.007772876272758056504958645544446150580
5Dmytro Timashov (R)X100.007267856767758059505657625444446250580
6Ryan LombergX100.007570866770758057505357635444446150580
7Adam HelewkaX100.007976876876555460506254665144446150580
8Nick Sorensen (R)X100.007168777168616257505258615544446050570
9JC LiponX100.006467586567697261505662585944446150570
10Paul Bittner (R)X100.008278916578585955504957665444446050570
11Yakov Trenin (R)X100.007976876376504955695551644844445750550
12Michael Joly (R)X100.007262966362504955505056615344445850540
13Rasmus AnderssonX100.005942877977687571254047622545455850600
14Sami Niku (R)X100.006965796765717461255453615044446150590
15Mitchell Vande Sompel (R)X100.007268826668737855255046614444445850580
16Eric RoyX100.00607068625856576425575162504848150560
17Dmitry Osipov (R)X100.008384816584495145253539643744445150560
18Michael Brodzinski (R)X100.007269796569555846253641593944445150540
Scratches
1Bryan Moore (R)XX100.00597260645549585566545056504444150520
2Mikkel Aagaard (R)XXX100.006864786464484851644156585344445550520
3Quentin Shore (R)XX100.007769946769555845563846614444445350520
4Kevin Spinozzi (R)X100.007975896575646658254754655144446150590
TEAM AVERAGE100.00736783667061665644505362474444545057
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Juuse Saros100.00806562638675727886806548487750700
2Jordan Binnington100.00685974627069727773733044446950650
Scratches
1Adam Wilcox100.00556683755356526053533044445650560
2Dylan Ferguson (R)100.00425063734043404640403044444350460
TEAM AVERAGE100.0061607168626159656362394545615059
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Dominic TurgeonSenators (Ott)C20153247192315394978276319.23%2351425.7328106350001453258.63%6841616011.8300201251
2Jonny BrodzinskiSenators (Ott)C/RW201617331600243160213926.67%1135017.503586331011143243.86%114249011.8900000333
3Dmytro TimashovSenators (Ott)LW20181533162010423286235420.93%2044222.132579280001402341.10%73166021.4900011131
4Dryden HuntSenators (Ott)LW2051823112042268218466.10%637718.860113220111231058.82%17268001.2200000012
5Jack RodewaldSenators (Ott)RW20131023166830223653133624.53%1437718.88213527000041035.29%171513001.2200213201
6Rasmus AnderssonSenators (Ott)D20216182910020365514183.64%4056628.34101140000044100.00%01332000.6400000001
7Adam HelewkaSenators (Ott)LW201071731010261744102422.73%1024412.24325560001220336.36%221113021.3900101121
8Nick SorensenSenators (Ott)RW20771479524193782418.92%1625812.93000010000013033.33%684001.0800100100
9Yakov TreninSenators (Ott)C1565115281017273371518.18%923615.75000016000001062.26%15951000.9300101000
10JC LiponSenators (Ott)RW206410460261546121213.04%422011.0300002000000050.00%651000.9100000110
11Ryan LombergSenators (Ott)LW1745974022233091813.33%625915.28000010000390012.50%843000.6900000001
12Eric RoySenators (Ott)D171780215918921111.11%1426315.491232900008000.00%0112000.6100010000
13Sami NikuSenators (Ott)D2008816155202313770.00%3644122.05011032000034000.00%0618000.3600010000
14Kevin SpinozziSenators (Ott)D15178162220232417785.88%2835823.93101326000032100.00%0323000.4500220001
15Mitchell Vande SompelSenators (Ott)D2004463420161414970.00%2739119.56000025000130000.00%0323000.2000211000
16Dmitry OsipovSenators (Ott)D20134055181312638.33%1726013.031011200007000.00%015000.3100100000
17Paul BittnerSenators (Ott)LW17123-17537101110.00%2865.1110135000000040.00%3011000.6900100000
18Michael JolySenators (Ott)RW8033100462110.00%1425.2600003000000090.00%1001001.4300000000
19Mikkel AagaardSenators (Ott)C/LW/RW8123600162141525.00%513617.0300003000000050.47%10725000.4400000000
20Michael BrodzinskiSenators (Ott)D20022626101194210.00%61638.170000000006000.00%005000.2400101001
21Bryan MooreSenators (Ott)LW/RW3011140300100.00%0217.220000000000000.00%000000.9200000000
Team Total or Average36010717528218431415042744668919939315.53%295601416.71172542443461129329161054.67%1253160199060.94001479111513
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Juuse SarosSenators (Ott)1611310.9183.349340052633325100.0000162310
2Jordan BinningtonSenators (Ott)55000.9173.592840017206111100.0000416100
Team Total or Average2116310.9183.4012180069839436200.00002018410


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Adam HelewkaSenators (Ott)LW231995-07-20No200 Lbs6 ft1NoNoNo2RFAPro & Farm600,000$0$0$NoLink
Adam WilcoxSenators (Ott)G251994-04-25No187 Lbs6 ft0NoNoNo1RFAPro & Farm500,000$0$0$NoLink
Bryan MooreSenators (Ott)LW/RW241994-05-25Yes203 Lbs5 ft11NoNoNo2RFAPro & Farm625,000$0$0$NoLink
Dmitry OsipovSenators (Ott)D221996-10-04Yes229 Lbs6 ft4NoNoNo3RFAPro & Farm650,000$0$0$NoLink
Dmytro TimashovSenators (Ott)LW221996-09-30Yes195 Lbs5 ft10NoNoNo2RFAPro & Farm500,000$0$0$NoLink
Dominic TurgeonSenators (Ott)C231996-02-24No196 Lbs6 ft2NoNoNo2RFAPro & Farm750,000$0$0$NoLink
Dryden HuntSenators (Ott)LW231995-11-26No197 Lbs6 ft0NoNoNo2RFAPro & Farm925,000$0$0$NoLink
Dylan FergusonSenators (Ott)G201998-09-20Yes189 Lbs6 ft1NoNoNo3ELCPro & Farm500,000$0$0$NoLink
Eric RoySenators (Ott)D241994-10-24No181 Lbs6 ft3NoNoNo1RFAPro & Farm500,000$0$0$NoLink
JC LiponSenators (Ott)RW251993-07-10No183 Lbs6 ft0NoNoNo1RFAPro & Farm650,000$0$0$NoLink
Jack RodewaldSenators (Ott)RW251994-02-14No169 Lbs6 ft0NoNoNo2RFAPro & Farm625,000$0$0$NoLink
Jonny BrodzinskiSenators (Ott)C/RW251993-06-19No218 Lbs6 ft1NoNoNo1RFAPro & Farm500,000$0$0$NoLink
Jordan BinningtonSenators (Ott)G251993-07-11No167 Lbs6 ft1NoNoNo1RFAPro & Farm660,000$0$0$NoLink
Juuse SarosSenators (Ott)G241995-04-18No180 Lbs5 ft11NoNoNo1RFAPro & Farm650,000$0$0$NoLink
Kevin SpinozziSenators (Ott)D221996-05-23Yes188 Lbs6 ft2NoNoNo3RFAPro & Farm650,000$0$0$NoLink
Michael BrodzinskiSenators (Ott)D231995-05-28Yes195 Lbs5 ft11NoNoNo2RFAPro & Farm925,000$0$0$NoLink
Michael JolySenators (Ott)RW241995-05-04Yes173 Lbs5 ft10NoNoNo2RFAPro & Farm625,000$0$0$NoLink
Mikkel AagaardSenators (Ott)C/LW/RW231995-10-27Yes176 Lbs5 ft11NoNoNo2RFAPro & Farm625,000$0$0$NoLink
Mitchell Vande SompelSenators (Ott)D221997-02-11Yes192 Lbs5 ft10NoNoNo3RFAPro & Farm700,000$0$0$NoLink
Nick SorensenSenators (Ott)RW241994-10-23Yes182 Lbs6 ft1NoNoNo2RFAPro & Farm850,000$0$0$NoLink
Paul BittnerSenators (Ott)LW221996-11-03Yes214 Lbs6 ft4NoNoNo2RFAPro & Farm850,000$0$0$NoLink
Quentin ShoreSenators (Ott)C/RW241994-05-25Yes183 Lbs6 ft2NoNoNo2RFAPro & Farm500,000$0$0$NoLink
Rasmus AnderssonSenators (Ott)D221996-10-26No214 Lbs6 ft1NoNoNo2RFAPro & Farm800,000$0$0$NoLink
Ryan LombergSenators (Ott)LW241994-12-09No190 Lbs5 ft9NoNoNo2RFAPro & Farm710,000$0$0$NoLink
Sami NikuSenators (Ott)D221996-10-10Yes176 Lbs6 ft1NoNoNo3RFAPro & Farm500,000$0$0$NoLink
Yakov TreninSenators (Ott)C221997-01-13Yes201 Lbs6 ft2NoNoNo3RFAPro & Farm800,000$0$0$NoLink
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2623.23191 Lbs6 ft12.00660,385$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Dmytro TimashovDominic TurgeonJack Rodewald40122
2Ryan LombergJonny BrodzinskiNick Sorensen30122
3Dryden HuntYakov TreninJC Lipon20122
4Adam HelewkaDominic TurgeonMichael Joly10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Rasmus AnderssonSami Niku40122
2Mitchell Vande SompelEric Roy30122
3Dmitry OsipovMichael Brodzinski20122
4Rasmus AnderssonSami Niku10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Dmytro TimashovDominic TurgeonJack Rodewald60122
2Ryan LombergJonny BrodzinskiNick Sorensen40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Rasmus AnderssonSami Niku60122
2Mitchell Vande SompelEric Roy40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Dominic TurgeonDmytro Timashov60122
2Jack RodewaldRyan Lomberg40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Rasmus AnderssonSami Niku60122
2Mitchell Vande SompelEric Roy40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Dominic Turgeon60122Rasmus AnderssonSami Niku60122
2Dmytro Timashov40122Mitchell Vande SompelEric Roy40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Dominic TurgeonDmytro Timashov60122
2Jack RodewaldRyan Lomberg40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Rasmus AnderssonSami Niku60122
2Mitchell Vande SompelEric Roy40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Dmytro TimashovDominic TurgeonJack RodewaldRasmus AnderssonSami Niku
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Dmytro TimashovDominic TurgeonJack RodewaldRasmus AnderssonSami Niku
Extra Forwards
Normal PowerPlayPenalty Kill
Paul Bittner, Dryden Hunt, Adam HelewkaPaul Bittner, Dryden HuntAdam Helewka
Extra Defensemen
Normal PowerPlayPenalty Kill
Dmitry Osipov, Michael Brodzinski, Mitchell Vande SompelDmitry OsipovMichael Brodzinski, Mitchell Vande Sompel
Penalty Shots
Dominic Turgeon, Dmytro Timashov, Jack Rodewald, Ryan Lomberg, Dryden Hunt
Goalie
#1 : Juuse Saros, #2 : Jordan Binnington


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Crunch642000002019132100000141403210000065180.6672032520016345251951792022891922479451317228.57%15566.67%019836853.80%27552052.88%21236558.08%397202443181378203
2Penguins54100000191722200000010823210000099080.80019335200163452517017920228919215691111049222.22%13469.23%019836853.80%27552052.88%21236558.08%397202443181378203
3Reign44000000351916220000001798220000001810881.00035559000163452514917920228919158501038614642.86%14564.29%019836853.80%27552052.88%21236558.08%397202443181378203
4Sound Tigers54100000331419330000002071321100000137680.80033558800163452517517920228919242975510619736.84%10280.00%119836853.80%27552052.88%21236558.08%397202443181378203
Total20164000001076938109100000613823107300000463115320.80010717528200163452568917920228919839295314427491734.69%521669.23%119836853.80%27552052.88%21236558.08%397202443181378203
_Since Last GM Reset20164000001076938109100000613823107300000463115320.80010717528200163452568917920228919839295314427491734.69%521669.23%119836853.80%27552052.88%21236558.08%397202443181378203
_Vs Conference1612400000725022871000004429158530000028217240.7507212019200163452554017920228919681245211341351131.43%381171.05%119836853.80%27552052.88%21236558.08%397202443181378203
_Vs Division600000002019130000000141403000000065100.0002032520016345251951792022891922479451317228.57%15566.67%019836853.80%27552052.88%21236558.08%397202443181378203

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
2032W810717528268983929531442700
All Games
GPWLOTWOTL SOWSOLGFGA
20164000010769
Home Games
GPWLOTWOTL SOWSOLGFGA
109100006138
Visitor Games
GPWLOTWOTL SOWSOLGFGA
107300004631
Last 10 Games
WLOTWOTL SOWSOL
910000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
491734.69%521669.23%1
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
179202289191634525
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
19836853.80%27552052.88%21236558.08%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
397202443181378203


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2018-10-024Sound Tigers1Senators7WBoxScore
3 - 2018-10-0412Sound Tigers4Senators9WBoxScore
5 - 2018-10-0620Senators3Sound Tigers4LBoxScore
7 - 2018-10-0828Senators10Sound Tigers3WBoxScore
9 - 2018-10-1036Sound Tigers2Senators4WBoxScore
15 - 2018-10-1657Senators3Crunch2WXBoxScore
17 - 2018-10-1861Senators2Crunch1WXBoxScore
19 - 2018-10-2065Crunch5Senators3LBoxScore
21 - 2018-10-2269Crunch5Senators6WXBoxScore
23 - 2018-10-2473Senators1Crunch2LXBoxScore
25 - 2018-10-2677Crunch4Senators5WBoxScore
29 - 2018-10-3085Senators1Penguins4LBoxScore
31 - 2018-11-0187Senators6Penguins4WBoxScore
33 - 2018-11-0389Penguins3Senators4WXBoxScore
35 - 2018-11-0591Penguins5Senators6WXBoxScore
37 - 2018-11-0793Senators2Penguins1WBoxScore
43 - 2018-11-1399Reign4Senators8WBoxScore
44 - 2018-11-14100Reign5Senators9WBoxScore
45 - 2018-11-15101Senators11Reign4WBoxScore
46 - 2018-11-16102Senators7Reign6WBoxScore



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
28 0 - 0.00% 0$0$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
0$ 1,717,000$ 1,506,000$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 0$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 0 0$ 0$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
2018201640000010769381091000006138231073000004631153210717528200163452568917920228919839295314427491734.69%521669.23%119836853.80%27552052.88%21236558.08%397202443181378203
Total Playoff201640000010769381091000006138231073000004631153210717528200163452568917920228919839295314427491734.69%521669.23%119836853.80%27552052.88%21236558.08%397202443181378203