Senators

GP: 62 | W: 43 | L: 18 | OTL: 1 | P: 87
GF: 352 | GA: 251 | PP%: 45.59% | PK%: 64.44%
GM : Mika Laakso | Morale : 50 | Team Overall : 57
Next Games #954 vs Comets
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Denis GurianovXX100.008176946976828957505060665744446450600
2Dominic TurgeonX100.007873896673828858735358655544446350600
3Jonny BrodzinskiXX100.007544947373546657375660602547476250580
4Dryden HuntX100.008545936771578358335955602545456250580
5Jack RodewaldX100.007772876272758056504958645544446150580
6Adam HelewkaX100.007976876876555460506254665144446150580
7Nick Sorensen (R)X100.007168777168616257505258615544446050570
8JC LiponX100.006467586567697261505662585944446150570
9Anthony Richard (R)X100.006659826259747958735161595844446150570
10Paul Bittner (R)X100.008278916578585955504957665444446050570
11Yakov Trenin (R)X100.007976876376504955695551644844445750550
12Michael Joly (R)X100.007262966362504955505056615344445850540
13Rasmus AnderssonX100.005942877977687571254047622545455850600
14Sami Niku (R)X99.006965796765717461255453615044446150590
15Kevin Spinozzi (R)X100.007975896575646658254754655144446150590
16Mitchell Vande Sompel (R)X100.007268826668737855255046614444445850580
17Dmitry Osipov (R)X100.008384816584495145253539643744445150560
18Michael Brodzinski (R)X100.007269796569555846253641593944445150540
Scratches
1Evgeny Svechnikov (R)XX100.007644837379528956316266572545456550600
2Bryan Moore (R)XX100.00597260645549585566545056504444150520
3Mikkel Aagaard (R)XXX100.006864786464484851644156585344445550520
4Quentin Shore (R)XX100.007769946769555845563846614444445350520
5Eric RoyX83.10607068625856576425575162504848150560
TEAM AVERAGE99.22736683677061675645505462464444545057
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Juuse Saros100.00806562638675727886806548487750700
2Jordan Binnington99.00685974627069727773733044446950650
Scratches
1Adam Wilcox100.00556683755356526053533044445650560
2Dylan Ferguson (R)100.00425063734043404640403044444350460
TEAM AVERAGE99.7561607168626159656362394545615059
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Dominic TurgeonSenators (Ott)C61658314866125851181612436416826.75%45149524.52112334227832569912357.75%17943951061.98236381736
2Denis GurianovSenators (Ott)LW/RW5641478838685090832044911620.10%40115620.6514132720761123730353.25%1695225021.5223523355
3Jonny BrodzinskiSenators (Ott)C/RW6236488425100101872085710917.31%24119319.25671310650112335146.46%4525123021.4100000464
4Evgeny SvechnikovSenators (Ott)LW/RW3238417929261062441605110023.75%2777524.238101817432353533338.99%3184521042.0400110553
5Rasmus AnderssonSenators (Ott)D587606746455488410150486.93%101154326.61218201189011087000.00%03185100.8700001126
6Dryden HuntSenators (Ott)LW50332760221208765145376522.76%1992418.496287490001196151.61%312820031.3022000633
7Ryan LombergSenatorsLW602631571321157963114296222.81%2792515.427101711370001473039.66%581824011.2300102043
8Dmytro TimashovSenatorsLW5625295425411562431423010217.61%1681914.6400001000072050.00%482424011.3222201133
9Juho LammikkoSenatorsC/LW/RW32242751233325476988224627.27%2162519.562688401011422157.95%3711113001.6300041242
10Matt CarleSenatorsD573414434353583797629413.95%115148426.05156986000096100.00%01155000.5900115110
11Jack RodewaldSenators (Ott)RW62162440153830876774285521.62%3595015.32145134000030245.10%511826000.8400015024
12JC LiponSenators (Ott)RW5812152774715614592215513.04%1570112.0900001000002050.00%142214000.7700030020
13Adam HelewkaSenators (Ott)LW6291423-91915494346243919.57%135528.91325422000021146.75%1541413000.8300021121
14Kevin SpinozziSenators (Ott)D613172018545065574115197.32%75119819.65101159000070100.00%01537000.3300343001
15Sami NikuSenators (Ott)D621181924623060675229241.92%82125220.21011262000068000.00%01659000.3000213001
16Mitchell Vande SompelSenators (Ott)D62017172343254541299140.00%5094615.27022010000119000.00%0438000.3600131000
17Nick SorensenSenators (Ott)RW36610162140372530112320.00%1036710.2000005000011057.14%778000.8700000002
18Dmitry OsipovSenators (Ott)D62189163515484724594.17%4291514.770000401104000100.00%1539000.2000120000
19Paul BittnerSenators (Ott)LW62213-4201912124916.67%52403.87000010000020169.23%3925000.2500000000
20Lias AnderssonSenatorsC1011-340601120.00%12020.0500000000000035.29%1720001.0000000000
21Anthony GrecoSenatorsLW/RW3101-1005876914.29%07224.0100013000011050.00%811000.2800000001
22Marko DanoSenatorsC/RW1011100114010.00%11717.9800001000000035.29%1702001.1100000000
23Anthony RichardSenators (Ott)C30011-30091510210.00%21193.9800001000070060.00%4513000.1700000000
24Eric RoySenators (Ott)D4000-140534100.00%15814.690000200005000.00%012000.0000000000
25Michael JolySenators (Ott)RW6000-100111020.00%0233.93000000000000100.00%110000.0000000000
26Michael BrodzinskiSenators (Ott)D6000520361110.00%47612.680000000006000.00%003000.0000000000
27Yakov TreninSenators (Ott)C14000-200312010.00%0271.9700000000000058.33%1210000.0000000000
Team Total or Average1116349561910408740420128112171911575112118.26%7711848416.5662103165124788791618793401653.31%36074205911190.98810232734414245
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Juuse SarosSenators (Ott)3122700.8983.491772001031007475120.00003013111
2Jordan BinningtonSenators (Ott)1914300.8904.2910632076693352000.500101924101
3Adam WilcoxSenators (Ott)177810.8844.649050070602348100.00001325000
Team Total or Average67431810.8924.0037402024923021175220.400106262212


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Adam HelewkaSenators (Ott)LW231995-07-20No200 Lbs6 ft1NoNoNo2RFAPro & Farm600,000$0$0$NoLink
Adam WilcoxSenators (Ott)G241994-04-25No187 Lbs6 ft0NoNoNo1RFAPro & Farm500,000$0$0$NoLink
Anthony RichardSenators (Ott)C221996-12-19Yes163 Lbs5 ft10NoNoNo2RFAPro & Farm650,000$0$0$NoLink
Bryan MooreSenators (Ott)LW/RW241994-05-25Yes203 Lbs5 ft11NoNoNo2RFAPro & Farm625,000$0$0$NoLink
Denis GurianovSenators (Ott)LW/RW211997-06-06No200 Lbs6 ft3NoNoNo2RFAPro & Farm950,000$0$0$NoLink
Dmitry OsipovSenators (Ott)D221996-10-04Yes229 Lbs6 ft4NoNoNo3RFAPro & Farm650,000$0$0$NoLink
Dominic TurgeonSenators (Ott)C221996-02-24No196 Lbs6 ft2NoNoNo2RFAPro & Farm750,000$0$0$NoLink
Dryden HuntSenators (Ott)LW231995-11-26No197 Lbs6 ft0NoNoNo2RFAPro & Farm925,000$0$0$NoLink
Dylan FergusonSenators (Ott)G201998-09-20Yes189 Lbs6 ft1NoNoNo3ELCPro & Farm500,000$0$0$NoLink
Eric Roy (Out of Payroll)Senators (Ott)D241994-10-24No181 Lbs6 ft3NoNoNo1RFAPro & Farm500,000$0$0$YesLink
Evgeny SvechnikovSenators (Ott)LW/RW221996-10-30Yes199 Lbs6 ft2NoNoNo2RFAPro & Farm900,000$0$0$NoLink
JC LiponSenators (Ott)RW251993-07-10No183 Lbs6 ft0NoNoNo1RFAPro & Farm650,000$0$0$NoLink
Jack RodewaldSenators (Ott)RW251994-02-14No169 Lbs6 ft0NoNoNo2RFAPro & Farm625,000$0$0$NoLink
Jonny BrodzinskiSenators (Ott)C/RW251993-06-19No218 Lbs6 ft1NoNoNo1RFAPro & Farm500,000$0$0$NoLink
Jordan BinningtonSenators (Ott)G251993-07-11No167 Lbs6 ft1NoNoNo1RFAPro & Farm660,000$0$0$NoLink
Juuse SarosSenators (Ott)G231995-04-18No180 Lbs5 ft11NoNoNo1RFAPro & Farm650,000$0$0$NoLink
Kevin SpinozziSenators (Ott)D221996-05-23Yes188 Lbs6 ft2NoNoNo3RFAPro & Farm650,000$0$0$NoLink
Michael BrodzinskiSenators (Ott)D231995-05-28Yes195 Lbs5 ft11NoNoNo2RFAPro & Farm925,000$0$0$NoLink
Michael JolySenators (Ott)RW231995-05-04Yes173 Lbs5 ft10NoNoNo2RFAPro & Farm625,000$0$0$NoLink
Mikkel AagaardSenators (Ott)C/LW/RW231995-10-27Yes176 Lbs5 ft11NoNoNo2RFAPro & Farm625,000$0$0$NoLink
Mitchell Vande SompelSenators (Ott)D221997-02-11Yes192 Lbs5 ft10NoNoNo3RFAPro & Farm700,000$0$0$NoLink
Nick SorensenSenators (Ott)RW241994-10-23Yes182 Lbs6 ft1NoNoNo2RFAPro & Farm850,000$0$0$NoLink
Paul BittnerSenators (Ott)LW221996-11-03Yes214 Lbs6 ft4NoNoNo2RFAPro & Farm850,000$0$0$NoLink
Quentin ShoreSenators (Ott)C/RW241994-05-25Yes183 Lbs6 ft2NoNoNo2RFAPro & Farm500,000$0$0$NoLink
Rasmus AnderssonSenators (Ott)D221996-10-26No214 Lbs6 ft1NoNoNo2RFAPro & Farm800,000$0$0$NoLink
Sami NikuSenators (Ott)D221996-10-10Yes176 Lbs6 ft1NoNoNo3RFAPro & Farm500,000$0$0$NoLink
Yakov TreninSenators (Ott)C221997-01-13Yes201 Lbs6 ft2NoNoNo3RFAPro & Farm800,000$0$0$NoLink
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2722.93191 Lbs6 ft12.00683,704$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Denis GurianovDominic TurgeonJack Rodewald40122
2Dryden HuntJonny BrodzinskiNick Sorensen30122
3Adam HelewkaAnthony RichardJC Lipon20122
4Paul BittnerYakov TreninMichael Joly10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Kevin SpinozziSami Niku40122
2Mitchell Vande SompelRasmus Andersson30122
3Dmitry OsipovMichael Brodzinski20122
4Mitchell Vande SompelSami Niku10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Denis GurianovDominic TurgeonJack Rodewald60122
2Adam HelewkaJonny BrodzinskiNick Sorensen40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Kevin SpinozziSami Niku60122
2Mitchell Vande SompelDmitry Osipov40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Dominic TurgeonDenis Gurianov60122
2Jonny BrodzinskiJack Rodewald40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Dmitry OsipovSami Niku60122
2Mitchell Vande SompelKevin Spinozzi40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Dominic Turgeon60122Kevin SpinozziSami Niku60122
2Denis Gurianov40122Mitchell Vande SompelMichael Brodzinski40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Dominic TurgeonDenis Gurianov60122
2Anthony RichardJack Rodewald40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Michael BrodzinskiSami Niku60122
2Mitchell Vande SompelKevin Spinozzi40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Denis GurianovDominic TurgeonJack RodewaldKevin SpinozziSami Niku
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Denis GurianovDominic TurgeonJack RodewaldKevin SpinozziSami Niku
Extra Forwards
Normal PowerPlayPenalty Kill
Adam Helewka, Paul Bittner, Anthony RichardAdam Helewka, Paul BittnerAnthony Richard
Extra Defensemen
Normal PowerPlayPenalty Kill
Dmitry Osipov, Michael Brodzinski, Mitchell Vande SompelDmitry OsipovMichael Brodzinski, Mitchell Vande Sompel
Penalty Shots
Dominic Turgeon, Denis Gurianov, Paul Bittner, Jack Rodewald, Jonny Brodzinski
Goalie
#1 : Jordan Binnington, #2 : Juuse Saros


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals21100000912-30000000000021100000912-320.500917260081139123144853471764327812513254250.00%4250.00%053797754.96%768148051.89%618115053.74%121460012975491230662
2Americans6330000028226413000001317-4220000001551060.50028477510811391231418353471764327209767812412650.00%14471.43%153797754.96%768148051.89%618115053.74%121460012975491230662
3Bears31101000181531010000046-221001000149540.66718244200811391231482534717643271375321646350.00%8362.50%053797754.96%768148051.89%618115053.74%121460012975491230662
4Bruins42101000161332010100056-122000000117460.750162339008113912314129534717643271464321929555.56%3233.33%053797754.96%768148051.89%618115053.74%121460012975491230662
5Checkers2100100014952100100014950000000000041.0001420340081139123146353471764327812621505240.00%8450.00%053797754.96%768148051.89%618115053.74%121460012975491230662
6Condors11000000918110000009180000000000021.00091322008113912314365347176432730766323266.67%30100.00%053797754.96%768148051.89%618115053.74%121460012975491230662
7Crunch31200000914-520200000310-71100000064220.3339172600811391231484534717643271123429474250.00%7442.86%053797754.96%768148051.89%618115053.74%121460012975491230662
8Devils220000002061411000000103711000000103741.00020335300811391231487534717643276227243710660.00%10100.00%053797754.96%768148051.89%618115053.74%121460012975491230662
9Falcons1010000046-21010000046-20000000000000.000471100811391231433534717643274616441911100.00%7357.14%053797754.96%768148051.89%618115053.74%121460012975491230662
10Griffins1100000010371100000010370000000000021.00010172700811391231436534717643273183124100.00%3166.67%153797754.96%768148051.89%618115053.74%121460012975491230662
11Gulls11000000211000000000001100000021121.000224008113912314255347176432722928212150.00%4175.00%053797754.96%768148051.89%618115053.74%121460012975491230662
12Heat1010000025-3000000000001010000025-300.000235008113912314205347176432738110272150.00%000.00%053797754.96%768148051.89%618115053.74%121460012975491230662
13IceCaps33000000207131100000095422000000112961.0002031510081139123145953471764327612346110330.00%20100.00%053797754.96%768148051.89%618115053.74%121460012975491230662
14IceHogs1000010067-1000000000001000010067-110.50069150081139123142753471764327481202722100.00%000.00%053797754.96%768148051.89%618115053.74%121460012975491230662
15Marlies5200102032221031001010181172100001014113101.0003250820081139123141575347176432720665391037228.57%12375.00%153797754.96%768148051.89%618115053.74%121460012975491230662
16Monsters1100000010371100000010370000000000021.0001017270081139123142853471764327441810133133.33%000.00%053797754.96%768148051.89%618115053.74%121460012975491230662
17Moose33000000207131100000082622000000125761.0002035550081139123141115347176432713535985611654.55%9455.56%053797754.96%768148051.89%618115053.74%121460012975491230662
18Penguins42200000161512110000010912110000066040.5001626420081139123141375347176432712546458715746.67%10370.00%253797754.96%768148051.89%618115053.74%121460012975491230662
19Phantoms3300000023111222000000166101100000075261.000233760008113912314115534717643271023910663266.67%5180.00%153797754.96%768148051.89%618115053.74%121460012975491230662
20Pirates302000101517-21010000046-2201000101111020.33315223710811391231485534717643271094321665240.00%8362.50%053797754.96%768148051.89%618115053.74%121460012975491230662
21Reign11000000734110000007340000000000021.000710170081139123144353471764327422042711100.00%20100.00%053797754.96%768148051.89%618115053.74%121460012975491230662
22Sound Tigers211000001311200000000000211000001311220.500131932008113912314785347176432798384037200.00%5260.00%053797754.96%768148051.89%618115053.74%121460012975491230662
23Stars10001000871000000000001000100087121.00081422008113912314385347176432754144173133.33%220.00%053797754.96%768148051.89%618115053.74%121460012975491230662
Total623418061303522511013015110301017612155321970312017613046870.702352561913208113912314191153471764327230477174212811366245.59%1354864.44%753797754.96%768148051.89%618115053.74%121460012975491230662
25Wild2110000046-2000000000002110000046-220.5004711008113912314315347176432743151242200.00%10100.00%053797754.96%768148051.89%618115053.74%121460012975491230662
26Wolf Pack421010002416811000000936311010001513260.7502441650081139123141245347176432715137657110220.00%10550.00%153797754.96%768148051.89%618115053.74%121460012975491230662
27Wolves1010000035-21010000035-20000000000000.00034700811391231410534717643275321824100.00%4175.00%053797754.96%768148051.89%618115053.74%121460012975491230662
28Wolves1100000010731100000010730000000000021.0001016260081139123144253471764327381062222100.00%30100.00%053797754.96%768148051.89%618115053.74%121460012975491230662
_Since Last GM Reset623418061303522511013015110301017612155321970312017613046870.702352561913208113912314191153471764327230477174212811366245.59%1354864.44%753797754.96%768148051.89%618115053.74%121460012975491230662
_Vs Conference47261305030268185832310903010123933024164020201459253680.72326842569320811391231414945347176432717345855169611094844.04%1023862.75%653797754.96%768148051.89%618115053.74%121460012975491230662
_Vs Division2510402020130983214340201062584117000010684028280.56013020733720811391231473353471764327874292223517482041.67%491765.31%353797754.96%768148051.89%618115053.74%121460012975491230662

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
6287W135256191319112304771742128120
All Games
GPWLOTWOTL SOWSOLGFGA
6234186130352251
Home Games
GPWLOTWOTL SOWSOLGFGA
3015113010176121
Visitor Games
GPWLOTWOTL SOWSOLGFGA
321973120176130
Last 10 Games
WLOTWOTL SOWSOL
370000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
1366245.59%1354864.44%7
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
534717643278113912314
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
53797754.96%768148051.89%618115053.74%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
121460012975491230662


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
2 - 2018-10-038Americans3Senators1LBoxScore
5 - 2018-10-0634Bruins2Senators3WXBoxScore
8 - 2018-10-0955Senators4IceCaps1WBoxScore
9 - 2018-10-1063Senators3Wolf Pack5LBoxScore
10 - 2018-10-1178Americans1Senators4WBoxScore
13 - 2018-10-14100Marlies4Senators5WXBoxScore
17 - 2018-10-18123Senators6Marlies4WBoxScore
18 - 2018-10-19131Crunch6Senators1LBoxScore
21 - 2018-10-22151Senators6Bruins4WBoxScore
22 - 2018-10-23162Checkers4Senators5WXBoxScore
23 - 2018-10-24165Senators2Sound Tigers5LBoxScore
27 - 2018-10-28194Phantoms4Senators9WBoxScore
29 - 2018-10-30209Senators7IceCaps1WBoxScore
31 - 2018-11-01224Penguins7Senators4LBoxScore
33 - 2018-11-03239Senators6Crunch4WBoxScore
35 - 2018-11-05249Senators4Admirals8LBoxScore
36 - 2018-11-06262Bears6Senators4LBoxScore
39 - 2018-11-09284Checkers5Senators9WBoxScore
43 - 2018-11-13307Senators8Bears4WBoxScore
45 - 2018-11-15317Phantoms2Senators7WBoxScore
47 - 2018-11-17332Senators7Phantoms5WBoxScore
50 - 2018-11-20345Moose2Senators8WBoxScore
52 - 2018-11-22365Senators5Penguins3WBoxScore
54 - 2018-11-24377Senators8Americans2WBoxScore
56 - 2018-11-26389Wolf Pack3Senators9WBoxScore
58 - 2018-11-28407Devils3Senators10WBoxScore
60 - 2018-11-30421Senators6Wolf Pack3WBoxScore
63 - 2018-12-03439Griffins3Senators10WBoxScore
65 - 2018-12-05457Senators6Wolf Pack5WXBoxScore
67 - 2018-12-07473Falcons6Senators4LBoxScore
68 - 2018-12-08482Senators8Stars7WXBoxScore
71 - 2018-12-11499Senators7Americans3WBoxScore
72 - 2018-12-12508Penguins2Senators6WBoxScore
75 - 2018-12-15532Senators5Bruins3WBoxScore
77 - 2018-12-17541Bruins4Senators2LBoxScore
80 - 2018-12-20564Senators6IceHogs7LXBoxScore
82 - 2018-12-22572Monsters3Senators10WBoxScore
84 - 2018-12-24583Senators5Admirals4WBoxScore
86 - 2018-12-26595Senators2Gulls1WBoxScore
88 - 2018-12-28609IceCaps5Senators9WBoxScore
90 - 2018-12-30631Senators11Sound Tigers6WBoxScore
91 - 2018-12-31639Wolves7Senators10WBoxScore
94 - 2019-01-03660Crunch4Senators2LBoxScore
97 - 2019-01-06676Senators6Bears5WXBoxScore
99 - 2019-01-08691Senators5Moose4WBoxScore
100 - 2019-01-09701Marlies5Senators6WXXBoxScore
103 - 2019-01-12719Senators6Pirates5WXXBoxScore
105 - 2019-01-14731Marlies2Senators7WBoxScore
108 - 2019-01-17751Senators3Wild1WBoxScore
110 - 2019-01-19763Reign3Senators7WBoxScore
113 - 2019-01-22786Senators7Moose1WBoxScore
114 - 2019-01-23793Americans7Senators3LBoxScore
116 - 2019-01-25806Senators8Marlies7WXXBoxScore
118 - 2019-01-27821Senators1Wild5LBoxScore
119 - 2019-01-28828Americans6Senators5LBoxScore
123 - 2019-02-01851Senators5Pirates6LBoxScore
124 - 2019-02-02861Wolves5Senators3LBoxScore
126 - 2019-02-04876Senators2Heat5LBoxScore
128 - 2019-02-06890Condors1Senators9WBoxScore
131 - 2019-02-09910Senators1Penguins3LBoxScore
132 - 2019-02-10921Pirates6Senators4LBoxScore
135 - 2019-02-13942Senators10Devils3WBoxScore
137 - 2019-02-15954Comets-Senators-
139 - 2019-02-17973Senators-Rampage-
140 - 2019-02-18976Senators-IceCaps-
141 - 2019-02-19987Bruins-Senators-
Trade Deadline --- Trades can’t be done after this day is simulated!
145 - 2019-02-231014Barracuda-Senators-
147 - 2019-02-251032Senators-Checkers-
148 - 2019-02-261040Senators-Sound Tigers-
150 - 2019-02-281052IceCaps-Senators-
152 - 2019-03-021070Senators-Devils-
154 - 2019-03-041082IceHogs-Senators-
158 - 2019-03-081110Senators-Marlies-
159 - 2019-03-091116Sound Tigers-Senators-
163 - 2019-03-131141Pirates-Senators-
169 - 2019-03-191174IceHogs-Senators-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
8 0 - 0.00% 0$0$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
1,892,928$ 1,796,000$ 1,635,000$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 1,892,928$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 36 10,503$ 378,108$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
201862341806130352251101301511030101761215532197031201761304687352561913208113912314191153471764327230477174212811366245.59%1354864.44%753797754.96%768148051.89%618115053.74%121460012975491230662
Total Regular Season62341806130352251101301511030101761215532197031201761304687352561913208113912314191153471764327230477174212811366245.59%1354864.44%753797754.96%768148051.89%618115053.74%121460012975491230662