Senators

GP: 21 | W: 14 | L: 7 | OTL: 0 | P: 28
GF: 52 | GA: 44 | PP%: 40.00% | PK%: 59.09%
GM : Mika Laakso | Morale : 50 | Team Overall : 57
Next Games vs Americans
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Denis GurianovXX100.008176946976828957505060665744446450600
2Evgeny Svechnikov (R)XX100.007644837379528956316266572545456550600
3Dominic TurgeonX100.007873896673828858735358655544446350600
4Juho Lammikko (R)XXX100.008176916876677058735853665044446150590
5Jonny BrodzinskiXX100.007544947373546657375660602547476250580
6Dryden HuntX100.008545936771578358335955602545456250580
7Jack RodewaldX100.007772876272758056504958645544446150580
8Dmytro Timashov (R)X100.007267856767758059505657625444446250580
9Ryan LombergX100.007570866770758057505357635444446150580
10Adam HelewkaX100.007976876876555460506254665144446150580
11JC LiponX100.006467586567697261505662585944446150570
12Paul Bittner (R)X100.008278916578585955504957665444446050570
13Rasmus AnderssonX100.005942877977687571254047622545455850600
14Matt CarleX100.007971996771535645253839703778855250600
15Sami Niku (R)X100.006965796765717461255453615044446150590
16Kevin Spinozzi (R)X100.007975896575646658254754655144446150590
17Mitchell Vande Sompel (R)X100.007268826668737855255046614444445850580
18Dmitry Osipov (R)X100.008384816584495145253539643744445150560
Scratches
1Nick Sorensen (R)X100.007168777168616257505258615544446050570
2Anthony Richard (R)X100.006659826259747958735161595844446150570
3Yakov Trenin (R)X100.007976876376504955695551644844445750550
4Michael Joly (R)X100.007262966362504955505056615344445850540
5Bryan Moore (R)XX100.00597260645549585566545056504444150520
6Mikkel Aagaard (R)XXX100.006864786464484851644156585344445550520
7Quentin Shore (R)XX100.007769946769555845563846614444445350520
8Eric RoyX100.00607068625856576425575162504848150560
9Michael Brodzinski (R)X100.007269796569555846253641593944445150540
TEAM AVERAGE100.00746784677062685645505462474646555057
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Juuse Saros100.00806562638675727886806548487750700
2Jordan Binnington100.00685974627069727773733044446950650
Scratches
1Adam Wilcox96.00556683755356526053533044445650560
2Dylan Ferguson (R)100.00425063734043404640403044444350460
TEAM AVERAGE99.0061607168626159656362394545615059
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Dominic TurgeonSenators (Ott)C212127481720435882195325.61%1752324.9528105271013345255.44%579711021.8300000910
2Evgeny SvechnikovSenators (Ott)LW/RW21212142111610382999386221.21%1849723.70641013260111302339.57%187289011.6900110142
3Jonny BrodzinskiSenators (Ott)C/RW21101222580403369204014.49%739618.87202422011031044.19%43125001.1100000112
4Rasmus AnderssonSenators (Ott)D214182218140174038171510.53%4555226.32066531000031000.00%0937100.8000000023
5Juho LammikkoSenators (Ott)C/LW/RW1810112148024414782721.28%1135619.830110190000210159.03%22745001.1800000021
6Denis GurianovSenators (Ott)LW/RW2112921775342057132621.05%1435717.056396281012170154.84%31249001.1700001011
7Matt CarleSenators (Ott)D211181917552533259174.00%4255326.37011431000039000.00%0418000.6900001100
8Dryden HuntSenators (Ott)LW2181018260443453162615.09%637417.84011119000011063.64%11159000.9600000201
9JC LiponSenators (Ott)RW18371081201714356248.57%220111.1700000000000050.00%2113000.9900000010
10Jack RodewaldSenators (Ott)RW2154935518192681619.23%926812.7700002000000037.50%847000.6700001010
11Dmytro TimashovSenators (Ott)LW2154962018133561714.29%42079.8700000000002077.78%965000.8700000011
12Ryan LombergSenators (Ott)LW211890202421257144.00%724911.86000000000140042.86%1453000.7200000000
13Kevin SpinozziSenators (Ott)D21167575262714747.14%2341319.68000019000022100.00%0412000.3400001000
14Mitchell Vande SompelSenators (Ott)D2105504012163340.00%829514.070000000000000.00%029000.3400000000
15Sami NikuSenators (Ott)D211342801929161236.25%2641419.74000020000020000.00%0413000.1900000001
16Adam HelewkaSenators (Ott)LW21112020111177914.29%11356.4700002000001035.14%3721000.2900000001
17Anthony GrecoSenatorsLW/RW3101-1005876914.29%07224.0100013000011050.00%811000.2800000001
18Dmitry OsipovSenators (Ott)D2101116014138120.00%1629614.1300000000010000.00%0113000.0700000000
19Anthony RichardSenators (Ott)C3000-100574010.00%14314.3700000000000057.14%1400000.0000000000
20Paul BittnerSenators (Ott)LW21000120220100.00%1452.1700001000000071.43%701000.0000000000
Team Total or Average3781051652701051163043646865020436916.15%258625616.5516244039257224624914752.59%1177143171130.8600114141414
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Juuse SarosSenators (Ott)107300.8913.286040033304147010.0000100100
2Adam WilcoxSenators (Ott)74300.8755.093890033265156100.000065000
3Jordan BinningtonSenators (Ott)53100.8924.00270201816689000.0000516000
Team Total or Average2214700.8863.9912642084735392110.00002121100


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers CONT StatusType Current Salary Salary Year 2 Salary Year 3 Salary Year 4 Salary Year 5 Salary Year 6 Salary Year 7 Salary Year 8 Salary Year 9 Salary Year 10 Link
Adam HelewkaSenators (Ott)LW231995-07-20No200 Lbs6 ft1NoNoNo2RFAPro & Farm600,000$600,000$Link
Adam WilcoxSenators (Ott)D241994-04-25No187 Lbs6 ft0NoNoNo1RFAPro & Farm500,000$Link
Anthony RichardSenators (Ott)C211996-12-19Yes163 Lbs5 ft10NoNoNo2RFAPro & Farm650,000$650,000$Link
Bryan MooreSenators (Ott)LW/RW241994-05-25Yes203 Lbs5 ft11NoNoNo2RFAPro & Farm625,000$625,000$Link
Denis GurianovSenators (Ott)LW/RW211997-06-06No200 Lbs6 ft3NoNoNo2RFAPro & Farm950,000$950,000$Link
Dmitry OsipovSenators (Ott)D221996-10-04Yes229 Lbs6 ft4NoNoNo3RFAPro & Farm650,000$650,000$650,000$Link
Dmytro TimashovSenators (Ott)LW221996-09-30Yes195 Lbs5 ft10NoNoNo2RFAPro & Farm500,000$500,000$Link
Dominic TurgeonSenators (Ott)C221996-02-24No196 Lbs6 ft2NoNoNo2RFAPro & Farm750,000$750,000$Link
Dryden HuntSenators (Ott)LW221995-11-26No197 Lbs6 ft0NoNoNo2RFAPro & Farm925,000$925,000$Link
Dylan FergusonSenators (Ott)C/LW/RW201998-09-20Yes189 Lbs6 ft1NoNoNo3ELCPro & Farm500,000$500,000$500,000$Link
Eric RoySenators (Ott)D241994-10-24No181 Lbs6 ft3NoNoNo1RFAPro & Farm500,000$Link
Evgeny SvechnikovSenators (Ott)LW/RW221996-10-30Yes199 Lbs6 ft2NoNoNo2RFAPro & Farm900,000$900,000$Link
JC LiponSenators (Ott)RW251993-07-10No183 Lbs6 ft0NoNoNo1RFAPro & Farm650,000$Link
Jack RodewaldSenators (Ott)RW241994-02-14No169 Lbs6 ft0NoNoNo2RFAPro & Farm625,000$625,000$Link
Jonny BrodzinskiSenators (Ott)C/RW251993-06-19No218 Lbs6 ft1NoNoNo1RFAPro & Farm500,000$Link
Jordan BinningtonSenators (Ott)C/LW251993-07-11No167 Lbs6 ft1NoNoNo1RFAPro & Farm660,000$Link
Juho LammikkoSenators (Ott)C/LW/RW221996-01-28Yes207 Lbs6 ft2NoNoNo2RFAPro & Farm750,000$750,000$Link
Juuse SarosSenators (Ott)C231995-04-18No180 Lbs5 ft11NoNoNo1RFAPro & Farm650,000$Link
Kevin SpinozziSenators (Ott)D221996-05-23Yes188 Lbs6 ft2NoNoNo3RFAPro & Farm650,000$650,000$650,000$Link
Matt CarleSenators (Ott)D331985-07-14 1:21:32 AMNo197 Lbs6 ft0NoNoNo1UFAPro & Farm5,000,000$Link
Michael BrodzinskiSenators (Ott)D231995-05-28Yes195 Lbs5 ft11NoNoNo2RFAPro & Farm925,000$925,000$Link
Michael JolySenators (Ott)RW231995-05-04Yes173 Lbs5 ft10NoNoNo2RFAPro & Farm625,000$625,000$Link
Mikkel AagaardSenators (Ott)C/LW/RW231995-10-27Yes176 Lbs5 ft11NoNoNo2RFAPro & Farm625,000$625,000$Link
Mitchell Vande SompelSenators (Ott)D211997-02-11Yes192 Lbs5 ft10NoNoNo3RFAPro & Farm700,000$700,000$700,000$Link
Nick SorensenSenators (Ott)RW241994-10-23Yes182 Lbs6 ft1NoNoNo2RFAPro & Farm850,000$850,000$Link
Paul BittnerSenators (Ott)LW221996-11-03Yes214 Lbs6 ft4NoNoNo2RFAPro & Farm850,000$850,000$Link
Quentin ShoreSenators (Ott)C/RW241994-05-25Yes183 Lbs6 ft2NoNoNo2RFAPro & Farm500,000$500,000$Link
Rasmus AnderssonSenators (Ott)D221996-10-26No214 Lbs6 ft1NoNoNo2RFAPro & Farm800,000$800,000$Link
Ryan LombergSenators (Ott)LW231994-12-09No190 Lbs5 ft9NoNoNo2RFAPro & Farm710,000$710,000$Link
Sami NikuSenators (Ott)D221996-10-10Yes176 Lbs6 ft1NoNoNo3RFAPro & Farm500,000$500,000$500,000$Link
Yakov TreninSenators (Ott)C211997-01-13Yes201 Lbs6 ft2NoNoNo3RFAPro & Farm800,000$800,000$800,000$Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
3123.03192 Lbs6 ft11.97820,000$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Evgeny SvechnikovDominic TurgeonDenis Gurianov40122
2Dryden HuntJuho LammikkoJonny Brodzinski30122
3Ryan LombergEvgeny SvechnikovJack Rodewald20122
4Dmytro TimashovDominic TurgeonJC Lipon10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Rasmus AnderssonMatt Carle40122
2Kevin SpinozziSami Niku30122
3Mitchell Vande SompelDmitry Osipov20122
4Rasmus AnderssonMatt Carle10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Evgeny SvechnikovDominic TurgeonDenis Gurianov60122
2Dryden HuntJuho LammikkoJonny Brodzinski40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Rasmus AnderssonMatt Carle60122
2Kevin SpinozziSami Niku40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Evgeny SvechnikovDominic Turgeon60122
2Denis GurianovJuho Lammikko40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Rasmus AnderssonMatt Carle60122
2Kevin SpinozziSami Niku40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Evgeny Svechnikov60122Rasmus AnderssonMatt Carle60122
2Dominic Turgeon40122Kevin SpinozziSami Niku40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Evgeny SvechnikovDominic Turgeon60122
2Denis GurianovJuho Lammikko40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Rasmus AnderssonMatt Carle60122
2Kevin SpinozziSami Niku40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Evgeny SvechnikovDominic TurgeonDenis GurianovRasmus AnderssonMatt Carle
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Evgeny SvechnikovDominic TurgeonDenis GurianovRasmus AnderssonMatt Carle
Extra Forwards
Normal PowerPlayPenalty Kill
Adam Helewka, Paul Bittner, Ryan LombergAdam Helewka, Paul BittnerRyan Lomberg
Extra Defensemen
Normal PowerPlayPenalty Kill
Mitchell Vande Sompel, Dmitry Osipov, Kevin SpinozziMitchell Vande SompelDmitry Osipov, Kevin Spinozzi
Penalty Shots
Evgeny Svechnikov, Dominic Turgeon, Denis Gurianov, Juho Lammikko, Jonny Brodzinski
Goalie
#1 : Juuse Saros, #2 : Jordan Binnington


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals1010000048-4000000000001010000048-400.0004711002335443221862452154441161211100.00%3166.67%019636154.29%22845550.11%19536154.02%400200445192418214
2Americans21100000541211000005410000000000020.5005914102335443521862452154331664711100.00%30100.00%119636154.29%22845550.11%19536154.02%400200445192418214
3Bears21100000121021010000046-21100000084420.500121628002335443541862452154984819434375.00%7271.43%019636154.29%22845550.11%19536154.02%400200445192418214
4Bruins21001000963100010003211100000064241.0009132200233544367186245215483295475360.00%000.00%019636154.29%22845550.11%19536154.02%400200445192418214
5Checkers2100100014952100100014950000000000041.000142034002335443631862452154812621505240.00%8450.00%019636154.29%22845550.11%19536154.02%400200445192418214
6Crunch21100000710-31010000016-51100000064220.50071320002335443601862452154751720373133.33%5420.00%019636154.29%22845550.11%19536154.02%400200445192418214
7IceCaps2200000011290000000000022000000112941.0001116270023354433918624521543192416116.67%10100.00%019636154.29%22845550.11%19536154.02%400200445192418214
8Marlies210010001183100010005411100000064241.00011182900233544373186245215469251238200.00%6266.67%019636154.29%22845550.11%19536154.02%400200445192418214
9Penguins1010000047-31010000047-30000000000000.000471100233544335186245215435114225240.00%220.00%019636154.29%22845550.11%19536154.02%400200445192418214
10Phantoms3300000023111222000000166101100000075261.00023376000233544311518624521541023910663266.67%5180.00%119636154.29%22845550.11%19536154.02%400200445192418214
Since Last GM Reset2111703000105852011440300052448107300000534112280.6671051652701023354436501862452154736258118436401640.00%441859.09%219636154.29%22845550.11%19536154.02%400200445192418214
12Sound Tigers1010000025-3000000000001010000025-300.00023500233544338186245215452201120200.00%3166.67%019636154.29%22845550.11%19536154.02%400200445192418214
Total2111703000105852011440300052448107300000534112280.6671051652701023354436501862452154736258118436401640.00%441859.09%219636154.29%22845550.11%19536154.02%400200445192418214
Vs Conference201160300010177241144030005244897200000493316280.7001011582591023354436281862452154692247112424391538.46%411758.54%219636154.29%22845550.11%19536154.02%400200445192418214
Vs Division105102000433013511020001416-254000000291415140.70043691121023354432911862452154291964521017635.29%15660.00%119636154.29%22845550.11%19536154.02%400200445192418214
16Wolf Pack1010000035-2000000000001010000035-200.000369002335443321862452154337213300.00%110.00%019636154.29%22845550.11%19536154.02%400200445192418214

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
2128W410516527065073625811843610
All Games
GPWLOTWOTL SOWSOLGFGA
21117300010585
Home Games
GPWLOTWOTL SOWSOLGFGA
114430005244
Visitor Games
GPWLOTWOTL SOWSOLGFGA
107300005341
Last 10 Games
WLOTWOTL SOWSOL
730000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
401640.00%441859.09%2
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
18624521542335443
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
19636154.29%22845550.11%19536154.02%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
400200445192418214


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
2 - 2018-10-038Americans3Senators1LBoxScore
5 - 2018-10-0634Bruins2Senators3WXBoxScore
8 - 2018-10-0955Senators4IceCaps1WBoxScore
9 - 2018-10-1063Senators3Wolf Pack5LBoxScore
10 - 2018-10-1178Americans1Senators4WBoxScore
13 - 2018-10-14100Marlies4Senators5WXBoxScore
17 - 2018-10-18123Senators6Marlies4WBoxScore
18 - 2018-10-19131Crunch6Senators1LBoxScore
21 - 2018-10-22151Senators6Bruins4WBoxScore
22 - 2018-10-23162Checkers4Senators5WXBoxScore
23 - 2018-10-24165Senators2Sound Tigers5LBoxScore
27 - 2018-10-28194Phantoms4Senators9WBoxScore
29 - 2018-10-30209Senators7IceCaps1WBoxScore
31 - 2018-11-01224Penguins7Senators4LBoxScore
33 - 2018-11-03239Senators6Crunch4WBoxScore
35 - 2018-11-05249Senators4Admirals8LBoxScore
36 - 2018-11-06262Bears6Senators4LBoxScore
39 - 2018-11-09284Checkers5Senators9WBoxScore
43 - 2018-11-13307Senators8Bears4WBoxScore
45 - 2018-11-15317Phantoms2Senators7WBoxScore
47 - 2018-11-17332Senators7Phantoms5WBoxScore
50 - 2018-11-20345Moose-Senators-
52 - 2018-11-22365Senators-Penguins-
54 - 2018-11-24377Senators-Americans-
56 - 2018-11-26389Wolf Pack-Senators-
58 - 2018-11-28407Devils-Senators-
60 - 2018-11-30421Senators-Wolf Pack-
63 - 2018-12-03439Griffins-Senators-
65 - 2018-12-05457Senators-Wolf Pack-
67 - 2018-12-07473Falcons-Senators-
68 - 2018-12-08482Senators-Stars-
71 - 2018-12-11499Senators-Americans-
72 - 2018-12-12508Penguins-Senators-
75 - 2018-12-15532Senators-Bruins-
77 - 2018-12-17541Bruins-Senators-
80 - 2018-12-20564Senators-IceHogs-
82 - 2018-12-22572Monsters-Senators-
84 - 2018-12-24583Senators-Admirals-
86 - 2018-12-26595Senators-Gulls-
88 - 2018-12-28609IceCaps-Senators-
90 - 2018-12-30631Senators-Sound Tigers-
91 - 2018-12-31639Wolves-Senators-
94 - 2019-01-03660Crunch-Senators-
97 - 2019-01-06676Senators-Bears-
99 - 2019-01-08691Senators-Moose-
100 - 2019-01-09701Marlies-Senators-
103 - 2019-01-12719Senators-Pirates-
105 - 2019-01-14731Marlies-Senators-
108 - 2019-01-17751Senators-Wild-
110 - 2019-01-19763Reign-Senators-
113 - 2019-01-22786Senators-Moose-
114 - 2019-01-23793Americans-Senators-
116 - 2019-01-25806Senators-Marlies-
118 - 2019-01-27821Senators-Wild-
119 - 2019-01-28828Americans-Senators-
123 - 2019-02-01851Senators-Pirates-
124 - 2019-02-02861Wolves-Senators-
126 - 2019-02-04876Senators-Heat-
128 - 2019-02-06890Condors-Senators-
131 - 2019-02-09910Senators-Penguins-
132 - 2019-02-10921Pirates-Senators-
135 - 2019-02-13942Senators-Devils-
137 - 2019-02-15954Comets-Senators-
139 - 2019-02-17973Senators-Rampage-
140 - 2019-02-18976Senators-IceCaps-
141 - 2019-02-19987Bruins-Senators-
Trade Deadline --- Trades can’t be done after this day is simulated!
145 - 2019-02-231014Barracuda-Senators-
147 - 2019-02-251032Senators-Checkers-
148 - 2019-02-261040Senators-Sound Tigers-
150 - 2019-02-281052IceCaps-Senators-
152 - 2019-03-021070Senators-Devils-
154 - 2019-03-041082IceHogs-Senators-
158 - 2019-03-081110Senators-Marlies-
159 - 2019-03-091116Sound Tigers-Senators-
163 - 2019-03-131141Pirates-Senators-
169 - 2019-03-191174IceHogs-Senators-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
27 0 - 0.00% 0$0$3000100

Expenses
Players Total SalariesPlayers Total Average SalariesCoaches Salaries
2,542,000$ 2,331,000$ 0$
Year To Date ExpensesSalary Cap Per DaysSalary Cap To Date
731,313$ 0$ 731,313$

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 122 14,865$ 1,813,530$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
20182111703000105852011440300052448107300000534112281051652701023354436501862452154736258118436401640.00%441859.09%219636154.29%22845550.11%19536154.02%400200445192418214
Total Regular Season2111703000105852011440300052448107300000534112281051652701023354436501862452154736258118436401640.00%441859.09%219636154.29%22845550.11%19536154.02%400200445192418214