Sound Tigers

GP: 62 | W: 33 | L: 25 | OTL: 4 | P: 70
GF: 448 | GA: 436 | PP%: 66.67% | PK%: 40.24%
GM : Rob Cammaert | Morale : 50 | Team Overall : 57
Next Games #951 vs Americans
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Marcus SorensenXX100.007162947559577659445670722549496850610
2Oskar SundqvistXXX100.007644896977577661726055782552536450610
3Matt BeleskeyX100.008899627276586763335055582569715950590
4Mike BlundenX100.008381886881687255505250704859605950590
5Anthony PelusoX100.008786906586535355504557725459596050580
6Colin GreeningXX100.008179856579717655504858655544446150580
7Anthony CamaraX100.007570886370545552505247624544445550540
8Rich CluneX100.006472456272636751504747604559595350540
9Eric GelinasX100.008081776881707456254053705062626050630
10Ian McCoshenX100.008460817781677157254349712547476050630
11Brian LashoffX100.008379936879768448253641683958595650620
12Julian MelchioriX100.008481906881667148253941663946465550590
13Jeff SchultzX100.008988906588565946253740673844445350580
14Ben Thomas (R)X100.007371786271778550254341603944445350580
15Andrew MacWilliamX100.007478646878687446253739603745455150570
16Jonas Siegenthaler (R)X100.007979786879657145253441623944445250570
17Calle Rosen (R)X100.007366896566667051254641603944445450560
Scratches
1Colin McDonaldX59.558279896579646754505351664844445950570
2Austin CarrollXX100.007678726478576049504151614844445550530
3John McCarronXX100.00708064625947555264484757504444150510
4Nathan Noel (R)X100.006563716563525445563846554444445050490
5Stuart PercyX100.007469855869656953254943614144445550560
TEAM AVERAGE98.16787580667563685240454865415050545057
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Tom McCollum100.00585569856060556259583044445850590
Scratches
TEAM AVERAGE100.0058556985606055625958304444585059
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Marcus SorensenSound Tigers (NYI)LW/RW62103103206153230698559619234417.28%57143623.172235574294000002441.19%386144570162.87123121994
2Ian McCoshenSound Tigers (NYI)D62361261625493581704101921848.78%113155525.08273057631210336107500.00%04076022.0800133279
3Colin GreeningSound Tigers (NYI)C/LW625058108-169050677539512725412.66%26110817.881222342558000003243.12%93010728031.9500415527
4Anthony PelusoSound Tigers (NYI)RW6241458677573443068622813.40%3588214.24527710000000152.63%768331011.9500001344
5Julian MelchioriSound Tigers (NYI)D62146377147450384220487986.86%81111317.9799181638022365100.00%01361001.3800415114
6Ben ThomasSound Tigers (NYI)D6202424-22281031198347420.00%3466310.71000110110500100.00%1429000.7200002000
7Jeff SchultzSound Tigers (NYI)D6202121-24292545435134250.00%4468511.0500000000118000.00%0828000.6100023001
8Calle RosenSound Tigers (NYI)D6202121100012123928230.00%83495.640000000000000.00%0312001.2000000000
9Mike BlundenSound Tigers (NYI)RW1161420-3191517116716238.96%920718.89257310000000045.45%11235001.9200012011
10Eric GelinasSound Tigers (NYI)D1441115-3321021174424189.09%3433223.783361125011226000.00%01115000.9000002001
11Brian LashoffSound Tigers (NYI)D202101237520233912215.13%2835217.63235419011323100.00%0318000.6800100001
12Colin McDonaldSound Tigers (NYI)RW53268-3181011114712234.26%22174.0900000000000069.57%2392000.7400002000
13Andrew MacWilliamSound Tigers (NYI)D62167027250164016.67%2761.241231400001000.00%000001.8200230000
14Jonas SiegenthalerSound Tigers (NYI)D6204410262023716940.00%103485.620000000000000.00%0110000.2300004000
15Matt BeleskeySound Tigers (NYI)LW2101-110107133133.33%12512.650000000000000.00%321000.7900101000
Team Total or Average720260512772-84483005154612306873128811.27%484935512.99831111941733870881524912743.50%14304513730221.6512161232302432
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Tom McCollumSound Tigers (NYI)105210.8884.565390041365205000.00001013002
2Anthony StolarzIslanders32100.8964.67180001413468000.000030000
Team Total or Average137310.8904.597190055499273000.00001313002


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Andrew MacWilliamSound Tigers (NYI)D281990-03-24No223 Lbs6 ft2NoNoNo1UFAPro & Farm850,000$0$0$NoLink
Anthony CamaraSound Tigers (NYI)LW251993-09-03No192 Lbs6 ft0NoNoNo2RFAPro & Farm650,000$0$0$NoLink
Anthony PelusoSound Tigers (NYI)RW281990-04-18No235 Lbs6 ft3NoNoNo2UFAPro & Farm690,000$0$0$NoLink
Austin CarrollSound Tigers (NYI)LW/RW241994-03-25No212 Lbs6 ft3NoNoNo1RFAPro & Farm500,000$0$0$NoLink
Ben ThomasSound Tigers (NYI)D221996-05-27Yes187 Lbs6 ft1NoNoNo2RFAPro & Farm600,000$0$0$NoLink
Brian LashoffSound Tigers (NYI)D271991-07-16No221 Lbs6 ft3NoNoNo2RFAPro & Farm650,000$0$0$NoLink
Calle RosenSound Tigers (NYI)D251994-02-02Yes176 Lbs6 ft0NoNoNo2RFAPro & Farm1,250,000$0$0$NoLink
Colin GreeningSound Tigers (NYI)C/LW311987-03-09No210 Lbs6 ft2NoNoNo2UFAPro & Farm950,000$0$0$NoLink
Colin McDonald (Out of Payroll)Sound Tigers (NYI)RW331985-07-14 1:21:32 AMNo219 Lbs6 ft2NoNoNo2UFAPro & Farm725,000$0$0$YesLink
Eric GelinasSound Tigers (NYI)D261992-05-08No215 Lbs6 ft4NoNoNo4RFAPro & Farm1,500,000$0$0$NoLink
Ian McCoshenSound Tigers (NYI)D231995-08-04No217 Lbs6 ft3NoNoNo2RFAPro & Farm850,000$0$0$NoLink
Jeff SchultzSound Tigers (NYI)D311987-07-14 1:21:32 PMNo217 Lbs6 ft6NoNoNo1UFAPro & Farm1,500,000$0$0$NoLink
John McCarronSound Tigers (NYI)C/RW261992-04-16No218 Lbs6 ft3NoNoNo1RFAPro & Farm500,000$0$0$NoLink
Jonas SiegenthalerSound Tigers (NYI)D211997-05-06Yes220 Lbs6 ft3NoNoNo3RFAPro & Farm800,000$0$0$NoLink
Julian MelchioriSound Tigers (NYI)D271991-12-06No214 Lbs6 ft5NoNoNo1RFAPro & Farm675,000$0$0$NoLink
Marcus SorensenSound Tigers (NYI)LW/RW261992-04-07No175 Lbs5 ft11NoNoNo1RFAPro & Farm825,000$0$0$NoLink
Matt BeleskeySound Tigers (NYI)LW291989-07-14 1:21:32 AMNo203 Lbs6 ft0NoNoNo3UFAPro & Farm4,000,000$0$0$NoLink
Mike BlundenSound Tigers (NYI)RW311987-07-14 1:21:32 PMNo217 Lbs6 ft4NoNoNo2UFAPro & Farm880,000$0$0$NoLink
Nathan NoelSound Tigers (NYI)C211997-06-21Yes174 Lbs5 ft11NoNoNo3RFAPro & Farm600,000$0$0$NoLink
Oskar SundqvistSound Tigers (NYI)C/LW/RW241994-03-23No209 Lbs6 ft3NoNoNo1RFAPro & Farm700,000$0$0$NoLink
Rich CluneSound Tigers (NYI)LW301988-07-14 7:21:32 PMNo207 Lbs5 ft10NoNoNo1UFAPro & Farm850,000$0$0$NoLink
Stuart PercySound Tigers (NYI)D251993-05-17No187 Lbs6 ft1NoNoNo2RFAPro & Farm835,000$0$0$NoLink
Tom McCollumSound Tigers (NYI)G291989-12-06No226 Lbs6 ft2NoNoNo1UFAPro & Farm600,000$0$0$NoLink
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2326.61208 Lbs6 ft21.83955,652$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Marcus Sorensen40122
2Colin Greening30122
3Anthony Peluso20122
4Marcus Sorensen10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Ian McCoshen40122
2Julian Melchiori30122
3Jeff SchultzBen Thomas20122
4Jonas SiegenthalerCalle Rosen10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Marcus Sorensen60122
2Colin Greening40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Ian McCoshen60122
2Julian Melchiori40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
160122
2Marcus Sorensen40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Ian McCoshen60122
2Julian Melchiori40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
160122Ian McCoshen60122
240122Julian Melchiori40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
160122
2Marcus Sorensen40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Ian McCoshen60122
2Julian Melchiori40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Marcus SorensenIan McCoshen
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Marcus SorensenIan McCoshen
Extra Forwards
Normal PowerPlayPenalty Kill
Anthony Peluso, , Anthony Peluso,
Extra Defensemen
Normal PowerPlayPenalty Kill
Andrew MacWilliam, Jeff Schultz, Ben ThomasAndrew MacWilliamJeff Schultz, Ben Thomas
Penalty Shots
, , Marcus Sorensen, ,
Goalie
#1 : , #2 :


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals1100000012480000000000011000000124821.00012243600100154188958999969101623331414105240.00%2150.00%0424126633.49%375110933.81%519157033.06%134587613855411013455
2Americans11000000954110000009540000000000021.000915240010015418894599996910162333142183266.67%110.00%0424126633.49%375110933.81%519157033.06%134587613855411013455
3Barracuda11000000752000000000001100000075221.0007101700100154188941999969101623291161822100.00%3233.33%0424126633.49%375110933.81%519157033.06%134587613855411013455
4Bears220000002251711000000826110000001431141.000224062001001541889105999969101623682631397685.71%3166.67%0424126633.49%375110933.81%519157033.06%134587613855411013455
5Bruins312000001721-4211000001112-11010000069-320.33317254200100154188914399996910162312129346112866.67%7442.86%0424126633.49%375110933.81%519157033.06%134587613855411013455
6Checkers310020002924511000000853200020002119261.00029538200100154188915699996910162314638123577100.00%6350.00%0424126633.49%375110933.81%519157033.06%134587613855411013455
7Comets202000001020-1000000000000202000001020-1000.00010152500100154188985999969101623973615222150.00%550.00%0424126633.49%375110933.81%519157033.06%134587613855411013455
8Condors1100000010641100000010640000000000021.0001017270010015418895999996910162325168122150.00%440.00%0424126633.49%375110933.81%519157033.06%134587613855411013455
9Crunch312000001819-121100000880101000001011-120.3331832500010015418891539999691016231486043508450.00%9544.44%0424126633.49%375110933.81%519157033.06%134587613855411013455
10Devils651000004234822000000151234310000027225100.83342751170010015418892759999691016232249837108121191.67%11281.82%2424126633.49%375110933.81%519157033.06%134587613855411013455
11Falcons10000010541100000105410000000000021.000581300100154188950999969101623389924200.00%220.00%0424126633.49%375110933.81%519157033.06%134587613855411013455
12Griffins10100000810-210100000810-20000000000000.0008162400100154188945999969101623431513174375.00%4250.00%0424126633.49%375110933.81%519157033.06%134587613855411013455
13Gulls1000010056-1000000000001000010056-110.50051015001001541889489999691016233994142150.00%2150.00%0424126633.49%375110933.81%519157033.06%134587613855411013455
14Heat11000000871000000000001100000087121.0008162400100154188946999969101623311647200.00%220.00%0424126633.49%375110933.81%519157033.06%134587613855411013455
15IceCaps1000100010910000000000010001000109121.000101626001001541889509999691016234212101522100.00%5420.00%0424126633.49%375110933.81%519157033.06%134587613855411013455
16IceHogs10001000651100010006510000000000021.0006111700100154188962999969101623271542211100.00%2150.00%0424126633.49%375110933.81%519157033.06%134587613855411013455
17Marlies211000001917210100000810-211000000117420.500193453001001541889979999691016239022102910770.00%5420.00%1424126633.49%375110933.81%519157033.06%134587613855411013455
18Monsters1010000078-1000000000001010000078-100.000713200010015418895599996910162340146162150.00%3233.33%0424126633.49%375110933.81%519157033.06%134587613855411013455
19Moose302001001823-510100000910-120100100913-410.1671834520010015418891349999691016231264135405360.00%550.00%0424126633.49%375110933.81%519157033.06%134587613855411013455
20Penguins615000002851-23413000002234-1220200000617-1120.1672848760010015418892799999691016232258017610814535.71%281546.43%0424126633.49%375110933.81%519157033.06%134587613855411013455
21Phantoms532000005343103210000033258211000002018260.6005390143001001541889238999969101623218674982191684.21%181327.78%1424126633.49%375110933.81%519157033.06%134587613855411013455
22Pirates320001001917211000000642210001001313050.8331932510010015418891349999691016231143721465480.00%8187.50%0424126633.49%375110933.81%519157033.06%134587613855411013455
23Rampage10100000910-110100000910-10000000000000.0009142300100154188960999969101623431421163266.67%3233.33%0424126633.49%375110933.81%519157033.06%134587613855411013455
24Reign11000000972000000000001100000097221.000916250010015418894499996910162338184224250.00%20100.00%0424126633.49%375110933.81%519157033.06%134587613855411013455
25Senators211000001113-2211000001113-20000000000020.50011193000100154188998999969101623781934265240.00%20100.00%0424126633.49%375110933.81%519157033.06%134587613855411013455
Total6227250442044843612301513010102061997321212034102422375700.56544878012280010015418893000999969101623251285569699015010066.67%16910140.24%5424126633.49%375110933.81%519157033.06%134587613855411013455
27Wild10100000310-710100000310-70000000000000.00034700100154188954999969101623469211511100.00%330.00%0424126633.49%375110933.81%519157033.06%134587613855411013455
28Wolf Pack411001103132-111000000871301001102325-250.6253151820010015418891989999691016231695054734375.00%171041.18%1424126633.49%375110933.81%519157033.06%134587613855411013455
29Wolves312000001518-32110000097210100000611-520.3331527420010015418891389999691016231545619322150.00%7614.29%0424126633.49%375110933.81%519157033.06%134587613855411013455
30Wolves11000000835000000000001100000083521.000815230010015418895099996910162327100133266.67%000.00%0424126633.49%375110933.81%519157033.06%134587613855411013455
_Since Last GM Reset6227250442044843612301513010102061997321212034102422375700.56544878012280010015418893000999969101623251285569699015010066.67%16910140.24%5424126633.49%375110933.81%519157033.06%134587613855411013455
_Vs Conference4420170331032631313221390000015614792278033101701664510.580326564890001001541889210599996910162318025935487301138070.80%1256845.60%5424126633.49%375110933.81%519157033.06%134587613855411013455
_Vs Division271090011021219715126400000948591545001101181126230.42621237058200100154188913069999691016231090373365461654975.38%864646.51%4424126633.49%375110933.81%519157033.06%134587613855411013455

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
6270L544878012283000251285569699000
All Games
GPWLOTWOTL SOWSOLGFGA
6227254420448436
Home Games
GPWLOTWOTL SOWSOLGFGA
3015131010206199
Visitor Games
GPWLOTWOTL SOWSOLGFGA
3212123410242237
Last 10 Games
WLOTWOTL SOWSOL
460000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
15010066.67%16910140.24%5
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
9999691016231001541889
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
424126633.49%375110933.81%519157033.06%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
134587613855411013455


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2018-10-024Penguins7Sound Tigers6LBoxScore
2 - 2018-10-0312Sound Tigers8Devils4WBoxScore
4 - 2018-10-0529Sound Tigers14Bears3WBoxScore
7 - 2018-10-0847Sound Tigers5Devils3WBoxScore
8 - 2018-10-0960Crunch5Sound Tigers6WBoxScore
11 - 2018-10-1280Phantoms6Sound Tigers14WBoxScore
14 - 2018-10-15104Penguins9Sound Tigers4LBoxScore
15 - 2018-10-16109Sound Tigers4Wolf Pack6LBoxScore
18 - 2018-10-19133Sound Tigers6Pirates7LXBoxScore
19 - 2018-10-20141Bruins2Sound Tigers5WBoxScore
23 - 2018-10-24165Senators2Sound Tigers5WBoxScore
25 - 2018-10-26178Sound Tigers4Moose5LXBoxScore
27 - 2018-10-28197Crunch3Sound Tigers2LBoxScore
29 - 2018-10-30211Sound Tigers4Penguins8LBoxScore
32 - 2018-11-02231Americans5Sound Tigers9WBoxScore
36 - 2018-11-06256Griffins10Sound Tigers8LBoxScore
38 - 2018-11-08274Sound Tigers12Admirals4WBoxScore
39 - 2018-11-09285Bruins10Sound Tigers6LBoxScore
42 - 2018-11-12299Sound Tigers10Phantoms6WBoxScore
44 - 2018-11-14310Sound Tigers8Devils4WBoxScore
46 - 2018-11-16323Wolves2Sound Tigers6WBoxScore
49 - 2018-11-19343Sound Tigers7Monsters8LBoxScore
51 - 2018-11-21354Bears2Sound Tigers8WBoxScore
53 - 2018-11-23373Sound Tigers5Gulls6LXBoxScore
55 - 2018-11-25385Sound Tigers6Bruins9LBoxScore
56 - 2018-11-26394Devils7Sound Tigers9WBoxScore
59 - 2018-11-29415Sound Tigers6Wolves11LBoxScore
60 - 2018-11-30422IceHogs5Sound Tigers6WXBoxScore
64 - 2018-12-04445Moose10Sound Tigers9LBoxScore
66 - 2018-12-06465Sound Tigers2Comets8LBoxScore
68 - 2018-12-08479Devils5Sound Tigers6WBoxScore
70 - 2018-12-10493Sound Tigers11Marlies7WBoxScore
72 - 2018-12-12507Marlies10Sound Tigers8LBoxScore
74 - 2018-12-14525Sound Tigers8Wolves3WBoxScore
76 - 2018-12-16537Sound Tigers7Barracuda5WBoxScore
78 - 2018-12-18546Checkers5Sound Tigers8WBoxScore
81 - 2018-12-21570Phantoms12Sound Tigers11LBoxScore
84 - 2018-12-24585Sound Tigers10Phantoms12LBoxScore
86 - 2018-12-26599Sound Tigers11Checkers10WXBoxScore
88 - 2018-12-28610Falcons4Sound Tigers5WXXBoxScore
90 - 2018-12-30631Senators11Sound Tigers6LBoxScore
92 - 2019-01-01646Sound Tigers2Penguins9LBoxScore
94 - 2019-01-03657Sound Tigers10Wolf Pack11LXBoxScore
95 - 2019-01-04669Sound Tigers5Moose8LBoxScore
97 - 2019-01-06678Pirates4Sound Tigers6WBoxScore
100 - 2019-01-09699Condors6Sound Tigers10WBoxScore
102 - 2019-01-11714Sound Tigers9Reign7WBoxScore
104 - 2019-01-13727Sound Tigers9Wolf Pack8WXXBoxScore
106 - 2019-01-15735Penguins11Sound Tigers3LBoxScore
108 - 2019-01-17753Sound Tigers8Heat7WBoxScore
110 - 2019-01-19764Sound Tigers10IceCaps9WXBoxScore
111 - 2019-01-20772Wolf Pack7Sound Tigers8WBoxScore
114 - 2019-01-23795Sound Tigers10Crunch11LBoxScore
115 - 2019-01-24801Phantoms7Sound Tigers8WBoxScore
118 - 2019-01-27822Sound Tigers7Pirates6WBoxScore
119 - 2019-01-28833Penguins7Sound Tigers9WBoxScore
123 - 2019-02-01853Sound Tigers10Checkers9WXBoxScore
124 - 2019-02-02863Wild10Sound Tigers3LBoxScore
126 - 2019-02-04881Sound Tigers8Comets12LBoxScore
128 - 2019-02-06892Rampage10Sound Tigers9LBoxScore
132 - 2019-02-10918Sound Tigers6Devils11LBoxScore
133 - 2019-02-11928Wolves5Sound Tigers3LBoxScore
136 - 2019-02-14951Americans-Sound Tigers-
140 - 2019-02-18980Crunch-Sound Tigers-
142 - 2019-02-20993Sound Tigers-Americans-
Trade Deadline --- Trades can’t be done after this day is simulated!
144 - 2019-02-221010Stars-Sound Tigers-
146 - 2019-02-241020Sound Tigers-Crunch-
148 - 2019-02-261040Senators-Sound Tigers-
149 - 2019-02-271047Sound Tigers-Marlies-
152 - 2019-03-021071Wolf Pack-Sound Tigers-
157 - 2019-03-071100Bruins-Sound Tigers-
159 - 2019-03-091116Sound Tigers-Senators-
162 - 2019-03-121128IceCaps-Sound Tigers-
164 - 2019-03-141143Sound Tigers-Bears-
167 - 2019-03-171163IceCaps-Sound Tigers-
169 - 2019-03-191170Sound Tigers-Bears-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
8 0 - 0.00% 0$0$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
1,704,006$ 2,125,500$ 1,955,500$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 1,683,448$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 36 12,430$ 447,480$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
201862272504420448436123015130101020619973212120341024223757044878012280010015418893000999969101623251285569699015010066.67%16910140.24%5424126633.49%375110933.81%519157033.06%134587613855411013455
Total Regular Season62272504420448436123015130101020619973212120341024223757044878012280010015418893000999969101623251285569699015010066.67%16910140.24%5424126633.49%375110933.81%519157033.06%134587613855411013455