Moose

GP: 22 | W: 11 | L: 8 | OTL: 3 | P: 25
GF: 73 | GA: 76 | PP%: 61.54% | PK%: 58.14%
GM : Mat Peltier | Morale : 50 | Team Overall : 58
Next Games vs Gulls
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Alexander BurmistrovXXX100.007142858068625763746358692567676450620
2Chris TerryX100.007168797168565371506871646744446850620
3Lawson CrouseX100.009198817782598561365059712555556550620
4Bracken KearnsXX100.007571856871828862786158645544446450610
5Phillip Di GiuseppeX100.008357897973576959256359587559596450610
6Andrew AgozzinoXX100.006966776766808660755660615744446350590
7Markus HannikainenX100.007343937170527058555959672547476450590
8Joseph LaBateX100.006474416574596152654654565144445450530
9Tyson StrachanX100.008180836880738048254839683762635450620
10Adam PardyX100.008384806884505149254741713967685350610
11Trevor CarrickX100.007470836670758056255246624444445850590
12Luke WitkowskiX100.008399427178456152445048602555565650580
13Jacob Middleton (R)X100.007376666076687352254842614044445450570
14Keaton Thompson (R)X100.007267856267677247253841593944445250550
15Jonathan RacineX100.006272376672707744254339533744444850540
Scratches
1Marco RoyX100.00616570635150605665555359504444150530
2Dylan Sadowy (R)X100.007268806668474944503844584244445050490
3Philip LarsenX97.136541947567695973255548632560606050610
4Anton Cederholm (R)X100.008376996476363541252839633744444950520
TEAM AVERAGE99.85746976697261675543515062425050555058
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
Scratches
1Jake Paterson (R)100.00515670664951505649493044445150520
TEAM AVERAGE100.0051567066495150564949304444515052
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Andrew AgozzinoMoose (Win)C/LW222730578262034351384510119.57%1246921.356814824000002054.21%1903814032.4301202413
2Bracken KearnsMoose (Win)C/LW222624501137153827122377421.31%1239918.1785131126000041257.89%1713510032.5001101260
3Markus HannikainenMoose (Win)LW22251540-10552733140468917.86%1639918.1423528000002050.00%283512022.0000100202
4Alexander BurmistrovMoose (Win)C/LW/RW22132437-595223469193618.84%1236516.6055106270001110358.96%597208102.0302001110
5Phillip Di GiuseppeMoose (Win)LW22171936-912104623108305615.74%1744420.194489281013160037.31%67499001.6201011012
6Lawson CrouseMoose (Win)LW22151429-614080323171165321.13%1343019.572355240001241052.43%1032216021.3502538002
7Tyson StrachanMoose (Win)D2212728-13451538304724272.13%3452423.85167237011029000.00%0415001.0700003000
8Philip LarsenMoose (Win)D1661925-1255182346212013.04%3139324.61279426000223100.00%01610001.2700010013
9Trevor CarrickMoose (Win)D22220221171516294328224.65%2538917.71213216011020010.00%049001.1300102010
10Luke WitkowskiMoose (Win)D2219105492524182915143.45%1425111.450000000006000.00%029000.7900131000
11Adam PardyMoose (Win)D220771201030193411150.00%2939017.76000017000118000.00%0413000.3600002000
12Keaton ThompsonMoose (Win)D22044410103712570.00%41627.390000200003000.00%0111000.4900101001
13Jonathan RacineMoose (Win)D22033375758460.00%31436.510000000000000.00%022000.4200100000
14Jacob MiddletonMoose (Win)D221125291561213227.69%926412.010000200000100.00%0010000.1500111000
Team Total or Average302134216350-1741123534132688030352215.23%231502916.653242744924312381598655.97%11562321481101.39071492391113
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
Team Total or Average0.0000.0000.000


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers CONT StatusType Current Salary Salary Year 2 Salary Year 3 Salary Year 4 Salary Year 5 Salary Year 6 Salary Year 7 Salary Year 8 Salary Year 9 Salary Year 10 Link
Adam PardyMoose (Win)D331985-07-14 1:21:32 AMNo227 Lbs6 ft4NoNoNo1UFAPro & Farm625,000$Link
Alexander BurmistrovMoose (Win)C/LW/RW271991-10-20No180 Lbs6 ft1NoNoNo4RFAPro & Farm975,000$975,000$975,000$975,000$Link
Andrew AgozzinoMoose (Win)C/LW271991-01-02No187 Lbs5 ft10NoNoNo2RFAPro & Farm725,000$725,000$Link
Anton CederholmMoose (Win)D231995-02-21Yes204 Lbs6 ft2NoNoNo3RFAPro & Farm500,000$500,000$500,000$Link
Bracken KearnsMoose (Win)C/LW371981-05-12No200 Lbs6 ft0NoNoNo2UFAPro & Farm650,000$650,000$Link
Chris TerryMoose (Win)LW281990-04-07No195 Lbs5 ft10NoNoNo1UFAPro & Farm525,000$Link
Dylan SadowyMoose (Win)LW221996-04-01Yes180 Lbs6 ft1NoNoNo3RFAPro & Farm881,000$881,000$881,000$Link
Jacob MiddletonMoose (Win)D221996-01-01Yes200 Lbs6 ft3NoNoNo2RFAPro & Farm500,000$500,000$Link
Jake PatersonMoose (Win)G241994-05-02Yes176 Lbs6 ft1NoNoNo1RFAPro & Farm750,000$Link
Jonathan RacineMoose (Win)D251993-05-28No194 Lbs6 ft2NoNoNo1RFAPro & Farm650,000$Link
Joseph LaBateMoose (Win)C251993-04-16No210 Lbs6 ft5NoNoNo1RFAPro & Farm650,000$Link
Keaton ThompsonMoose (Win)D231995-09-13Yes182 Lbs6 ft0NoNoNo2RFAPro & Farm700,000$700,000$Link
Lawson CrouseMoose (Win)LW211997-06-23No220 Lbs6 ft4NoNoNo2RFAPro & Farm950,000$950,000$Link
Luke WitkowskiMoose (Win)D281990-04-14No217 Lbs6 ft2NoNoNo2UFAPro & Farm675,000$675,000$Link
Marco RoyMoose (Win)C241994-11-04No175 Lbs6 ft0NoNoNo1RFAPro & Farm800,000$Link
Markus HannikainenMoose (Win)LW251993-03-25No195 Lbs6 ft2NoNoNo1RFAPro & Farm850,000$Link
Philip LarsenMoose (Win)D281989-12-07No182 Lbs6 ft0NoNoNo1UFAPro & Farm750,000$Link
Phillip Di GiuseppeMoose (Win)LW251993-10-08No200 Lbs6 ft0NoNoNo2RFAPro & Farm650,000$650,000$Link
Trevor CarrickMoose (Win)D241994-07-03No186 Lbs6 ft2NoNoNo1RFAPro & Farm650,000$Link
Tyson StrachanMoose (Win)D331985-07-14 1:21:32 AMNo215 Lbs6 ft3NoNoNo1UFAPro & Farm675,000$Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2026.20196 Lbs6 ft11.70706,550$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Lawson CrouseAlexander BurmistrovPhillip Di Giuseppe40122
2Bracken KearnsAndrew Agozzino30122
3Phillip Di GiuseppeAndrew AgozzinoLawson Crouse20122
4Markus Hannikainen10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Tyson Strachan40122
2Adam PardyTrevor Carrick30122
3Jacob MiddletonLuke Witkowski20122
4Keaton ThompsonJonathan Racine10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Lawson CrouseAlexander BurmistrovPhillip Di Giuseppe60122
2Bracken KearnsAndrew Agozzino40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Tyson Strachan60122
2Adam PardyTrevor Carrick40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Lawson Crouse60122
2Alexander BurmistrovBracken Kearns40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Tyson Strachan60122
2Adam PardyTrevor Carrick40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Lawson Crouse60122Tyson Strachan60122
240122Adam PardyTrevor Carrick40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Lawson Crouse60122
2Alexander BurmistrovBracken Kearns40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Tyson Strachan60122
2Adam PardyTrevor Carrick40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Lawson CrouseAlexander BurmistrovPhillip Di GiuseppeTyson Strachan
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Lawson CrouseAlexander BurmistrovPhillip Di GiuseppeTyson Strachan
Extra Forwards
Normal PowerPlayPenalty Kill
Markus Hannikainen, , Phillip Di GiuseppeMarkus Hannikainen, Phillip Di Giuseppe
Extra Defensemen
Normal PowerPlayPenalty Kill
Jacob Middleton, Luke Witkowski, Keaton ThompsonJacob MiddletonLuke Witkowski, Keaton Thompson
Penalty Shots
Lawson Crouse, , Alexander Burmistrov, Bracken Kearns, Phillip Di Giuseppe
Goalie
#1 : , #2 :


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Americans21100000161151100000011471010000057-220.5001626420038486437836629230124731551315480.00%3166.67%023844153.97%14228450.00%29053754.00%505321445190383183
2Barracuda211000001817110100000812-411000000105520.50018284600384864383366292301247826107304250.00%6433.33%023844153.97%14228450.00%29053754.00%505321445190383183
3Bears1010000027-51010000027-50000000000000.00023500384864345366292301243916418100.00%220.00%023844153.97%14228450.00%29053754.00%505321445190383183
4Bruins1010000069-31010000069-30000000000000.00061016003848643483662923012430830303266.67%000.00%023844153.97%14228450.00%29053754.00%505321445190383183
5Checkers2200000016115110000007431100000097241.000163046003848643923662923012469242487457.14%10100.00%023844153.97%14228450.00%29053754.00%505321445190383183
6Crunch2100010010910000000000021000100109130.750101626003848643793662923012472282546000.00%5180.00%023844153.97%14228450.00%29053754.00%505321445190383183
7Griffins10001000981000000000001000100098121.000915240038486434636629230124371371322100.00%110.00%023844153.97%14228450.00%29053754.00%505321445190383183
8Gulls201000011318-500000000000201000011318-510.25013203300384864396366292301247620794711545.45%8187.50%023844153.97%14228450.00%29053754.00%505321445190383183
9Heat1010000067-11010000067-10000000000000.000610160038486433836629230124441621911100.00%3166.67%023844153.97%14228450.00%29053754.00%505321445190383183
10IceCaps1100000011290000000000011000000112921.000111728003848643513662923012416922173266.67%110.00%023844153.97%14228450.00%29053754.00%505321445190383183
11Penguins1010000034-11010000034-10000000000000.0003470038486435136629230124227222722100.00%10100.00%023844153.97%14228450.00%29053754.00%505321445190383183
12Pirates320000011918111000000761210000011212050.833193655003848643126366292301241004330685360.00%5260.00%023844153.97%14228450.00%29053754.00%505321445190383183
Since Last GM Reset22980210215214481146010007376-3115201102796811250.56815225340500384864397436629230124801286429436523261.54%431858.14%123844153.97%14228450.00%29053754.00%505321445190383183
14Sound Tigers10001000541100010005410000000000021.00057120038486434936629230124452172122100.00%10100.00%123844153.97%14228450.00%29053754.00%505321445190383183
Total22980210215214481146010007376-3115201102796811250.56815225340500384864397436629230124801286429436523261.54%431858.14%123844153.97%14228450.00%29053754.00%505321445190383183
Vs Conference147401101887513733010004138374100101473710180.6438814923700384864361936629230124466171193306281967.86%19763.16%123844153.97%14228450.00%29053754.00%505321445190383183
17Wolves11000000981110000009810000000000021.00091524003848643423662923012444181417300.00%2150.00%023844153.97%14228450.00%29053754.00%505321445190383183
18Wolves10100000911-210100000911-20000000000000.000916250038486435036629230124562281433100.00%4325.00%023844153.97%14228450.00%29053754.00%505321445190383183

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
2225L415225340597480128642943600
All Games
GPWLOTWOTL SOWSOLGFGA
22982102152144
Home Games
GPWLOTWOTL SOWSOLGFGA
114610007376
Visitor Games
GPWLOTWOTL SOWSOLGFGA
115211027968
Last 10 Games
WLOTWOTL SOWSOL
450001
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
523261.54%431858.14%1
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
366292301243848643
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
23844153.97%14228450.00%29053754.00%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
505321445190383183


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2018-10-023Moose5Gulls9LBoxScore
3 - 2018-10-0418Bears7Moose2LBoxScore
5 - 2018-10-0631Moose9Griffins8WXBoxScore
6 - 2018-10-0744Moose9Checkers7WBoxScore
8 - 2018-10-0959Penguins4Moose3LBoxScore
10 - 2018-10-1171Moose6Pirates7LXXBoxScore
11 - 2018-10-1286Moose4Crunch2WBoxScore
13 - 2018-10-1493Checkers4Moose7WBoxScore
16 - 2018-10-17119Pirates6Moose7WBoxScore
19 - 2018-10-20139Americans4Moose11WBoxScore
20 - 2018-10-21146Moose11IceCaps2WBoxScore
23 - 2018-10-24164Moose6Crunch7LXBoxScore
25 - 2018-10-26178Sound Tigers4Moose5WXBoxScore
27 - 2018-10-28196Moose6Pirates5WBoxScore
29 - 2018-10-30212Bruins9Moose6LBoxScore
32 - 2018-11-02230Moose8Gulls9LXXBoxScore
34 - 2018-11-04242Wolves8Moose9WBoxScore
36 - 2018-11-06257Moose10Barracuda5WBoxScore
38 - 2018-11-08275Wolves11Moose9LBoxScore
40 - 2018-11-10291Moose5Americans7LBoxScore
42 - 2018-11-12304Barracuda12Moose8LBoxScore
46 - 2018-11-16327Heat7Moose6LBoxScore
50 - 2018-11-20345Moose-Senators-
52 - 2018-11-22359Americans-Moose-
54 - 2018-11-24380Admirals-Moose-
56 - 2018-11-26390Moose-Rampage-
58 - 2018-11-28406Moose-Pirates-
60 - 2018-11-30419Moose-Phantoms-
62 - 2018-12-02430Wolf Pack-Moose-
64 - 2018-12-04445Moose-Sound Tigers-
65 - 2018-12-05458Comets-Moose-
68 - 2018-12-08477Moose-Bruins-
69 - 2018-12-09490IceCaps-Moose-
72 - 2018-12-12511Wild-Moose-
74 - 2018-12-14527Moose-Condors-
77 - 2018-12-17544Falcons-Moose-
79 - 2018-12-19555Moose-Wolves-
81 - 2018-12-21568Moose-Crunch-
83 - 2018-12-23580Stars-Moose-
87 - 2018-12-27604Penguins-Moose-
88 - 2018-12-28617Moose-Comets-
91 - 2018-12-31636Bears-Moose-
94 - 2019-01-03659Moose-IceHogs-
95 - 2019-01-04669Sound Tigers-Moose-
99 - 2019-01-08691Senators-Moose-
101 - 2019-01-10706Moose-Penguins-
103 - 2019-01-12716Moose-Gulls-
105 - 2019-01-14730Pirates-Moose-
109 - 2019-01-18755Griffins-Moose-
111 - 2019-01-20768Moose-Marlies-
113 - 2019-01-22786Senators-Moose-
117 - 2019-01-26816Crunch-Moose-
120 - 2019-01-29835Moose-Monsters-
122 - 2019-01-31845Bears-Moose-
124 - 2019-02-02859Moose-Bears-
126 - 2019-02-04878Checkers-Moose-
128 - 2019-02-06889Moose-Bears-
130 - 2019-02-08905Devils-Moose-
131 - 2019-02-09916Moose-IceCaps-
134 - 2019-02-12936Moose-Checkers-
135 - 2019-02-13944Marlies-Moose-
139 - 2019-02-17969Crunch-Moose-
140 - 2019-02-18978Moose-Devils-
143 - 2019-02-21998Marlies-Moose-
Trade Deadline --- Trades can’t be done after this day is simulated!
144 - 2019-02-221006Moose-Checkers-
147 - 2019-02-251030Devils-Moose-
148 - 2019-02-261034Moose-Reign-
151 - 2019-03-011059Moose-Wolf Pack-
152 - 2019-03-021067Bruins-Moose-
154 - 2019-03-041084Moose-Griffins-
156 - 2019-03-061096Phantoms-Moose-
158 - 2019-03-081109Moose-Griffins-
162 - 2019-03-121131Checkers-Moose-
163 - 2019-03-131134Moose-Wolf Pack-
165 - 2019-03-151153Phantoms-Moose-
166 - 2019-03-161158Moose-IceCaps-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
27 0 - 0.00% 0$0$3000100

Expenses
Players Total SalariesPlayers Total Average SalariesCoaches Salaries
1,413,100$ 1,220,600$ 0$
Year To Date ExpensesSalary Cap Per DaysSalary Cap To Date
400,546$ 0$ 398,351$

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 122 8,264$ 1,008,208$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
201822980210215214481146010007376-31152011027968112515225340500384864397436629230124801286429436523261.54%431858.14%123844153.97%14228450.00%29053754.00%505321445190383183
Total Regular Season22980210215214481146010007376-31152011027968112515225340500384864397436629230124801286429436523261.54%431858.14%123844153.97%14228450.00%29053754.00%505321445190383183