Moose

GP: 75 | W: 36 | L: 33 | OTL: 6 | P: 78
GF: 514 | GA: 535 | PP%: 57.14% | PK%: 44.74%
GM : Mat Peltier | Morale : 50 | Team Overall : 57
Next Games #1158 vs IceCaps
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Alexander BurmistrovXXX100.007142858068625763746358692567676450620
2Lawson CrouseX100.009198817782598561365059712555556550620
3Bracken KearnsXX100.007571856871828862786158645544446450610
4Phillip Di GiuseppeX100.008357897973576959256359587559596450610
5Andrew AgozzinoXX99.006966776766808660755660615744446350590
6Joseph LaBateX100.006474416574596152654654565144445450530
7Marco RoyX100.00616570635150605665555359504444150530
8Dylan Sadowy (R)X100.007268806668474944503844584244445050490
9Adam PardyX100.008384806884505149254741713967685350610
10Philip LarsenX100.006541947567695973255548632560606050610
11Trevor CarrickX100.007470836670758056255246624444445850590
12Luke WitkowskiX100.008399427178456152445048602555565650580
13Jacob Middleton (R)X100.007376666076687352254842614044445450570
14Keaton Thompson (R)X100.007267856267677247253841593944445250550
15Jonathan RacineX100.006272376672707744254339533744444850540
16Anton Cederholm (R)X100.008376996476363541252839633744444950520
Scratches
1Markus HannikainenX92.047343937170527058555959672547476450590
TEAM AVERAGE99.47746976697160675544505062415050545057
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Jake Paterson (R)100.00515670664951505649493044445150520
Scratches
TEAM AVERAGE100.0051567066495150564949304444515052
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Andrew AgozzinoMoose (Win)C/LW75991012008926011510350814730819.49%46158921.1922305240106000014657.29%590133470122.52013361297
2Bracken KearnsMoose (Win)C/LW757810918715753510010044612828217.49%37138218.43253257411100113175356.89%57310935082.71012137145
3Phillip Di GiuseppeMoose (Win)LW756284146-3256401147433610120618.45%40150420.06162238311101016652336.24%22916037041.9401323546
4Alexander BurmistrovMoose (Win)C/LW/RW755785142-192810691262668113721.43%49123916.52192544271110005393361.31%22156832122.2913101338
5Lawson CrouseMoose (Win)LW75465298-27414240106862527415618.25%62145519.408101815102213101003047.85%3728344041.351322818115
6Markus HannikainenMoose (Win)LW60573895-2255597438311322414.88%39104417.41268225000002148.48%669734081.8200100833
7Tyson StrachanJetsD5185765-109745686813662735.88%78125024.52714218114022382100.00%01545001.0400243001
8Trevor CarrickMoose (Win)D7553843-467260576411369614.42%72126516.88527642011049110.00%01446000.6800606010
9Adam PardyMoose (Win)D7512829-461368081458538531.18%103125516.74022041000246000.00%01774000.4600448000
10Luke WitkowskiMoose (Win)D7512829916610073408846351.14%3680410.7300000000014000.00%0534000.7200488000
11Philip LarsenMoose (Win)D1661925-1255182346212013.04%3139324.61279426000223100.00%01610001.2700010013
12Jacob MiddletonMoose (Win)D754162016834534336020246.67%3587111.621011700000100.00%0233000.4600225000
13Keaton ThompsonMoose (Win)D750161614151512183720220.00%214746.330110200008000.00%0219000.6700102001
14Jonathan RacineMoose (Win)D75011111222102784019180.00%134175.560000000000000.00%0311000.5300110000
Team Total or Average9524246821106-14012667509338622796939161915.16%6621494815.7010715125817580335831449231757.23%40457245011381.4829523463363639
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
Team Total or Average0.0000.0000.000


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Adam PardyMoose (Win)D331985-07-14 1:21:32 AMNo227 Lbs6 ft4NoNoNo1UFAPro & Farm625,000$0$0$NoLink
Alexander BurmistrovMoose (Win)C/LW/RW271991-10-20No180 Lbs6 ft1NoNoNo4RFAPro & Farm975,000$0$0$NoLink
Andrew AgozzinoMoose (Win)C/LW281991-01-02No187 Lbs5 ft10NoNoNo2UFAPro & Farm725,000$0$0$NoLink
Anton CederholmMoose (Win)D241995-02-21Yes204 Lbs6 ft2NoNoNo3RFAPro & Farm500,000$0$0$NoLink
Bracken KearnsMoose (Win)C/LW371981-05-12No200 Lbs6 ft0NoNoNo2UFAPro & Farm650,000$0$0$NoLink
Dylan SadowyMoose (Win)LW221996-04-01Yes180 Lbs6 ft1NoNoNo3RFAPro & Farm881,000$0$0$NoLink
Jacob MiddletonMoose (Win)D231996-01-01Yes200 Lbs6 ft3NoNoNo2RFAPro & Farm500,000$0$0$NoLink
Jake PatersonMoose (Win)G241994-05-02Yes176 Lbs6 ft1NoNoNo1RFAPro & Farm750,000$0$0$NoLink
Jonathan RacineMoose (Win)D251993-05-28No194 Lbs6 ft2NoNoNo1RFAPro & Farm650,000$0$0$NoLink
Joseph LaBateMoose (Win)C251993-04-16No210 Lbs6 ft5NoNoNo1RFAPro & Farm650,000$0$0$NoLink
Keaton ThompsonMoose (Win)D231995-09-13Yes182 Lbs6 ft0NoNoNo2RFAPro & Farm700,000$0$0$NoLink
Lawson CrouseMoose (Win)LW211997-06-23No220 Lbs6 ft4NoNoNo2RFAPro & Farm950,000$0$0$NoLink
Luke WitkowskiMoose (Win)D281990-04-14No217 Lbs6 ft2NoNoNo2UFAPro & Farm675,000$0$0$NoLink
Marco RoyMoose (Win)C241994-11-04No175 Lbs6 ft0NoNoNo1RFAPro & Farm800,000$0$0$NoLink
Markus Hannikainen (Out of Payroll)Moose (Win)LW251993-03-25No195 Lbs6 ft2NoNoNo1RFAPro & Farm850,000$0$0$YesLink
Philip LarsenMoose (Win)D291989-12-07No182 Lbs6 ft0NoNoNo1UFAPro & Farm750,000$0$0$NoLink
Phillip Di GiuseppeMoose (Win)LW251993-10-08No200 Lbs6 ft0NoNoNo2RFAPro & Farm650,000$0$0$NoLink
Trevor CarrickMoose (Win)D241994-07-03No186 Lbs6 ft2NoNoNo1RFAPro & Farm650,000$0$0$NoLink
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
1825.94195 Lbs6 ft21.78718,389$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Lawson CrouseAlexander BurmistrovPhillip Di Giuseppe40122
2Bracken KearnsAndrew Agozzino30122
3Phillip Di GiuseppeAndrew AgozzinoLawson Crouse20122
410122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
140122
2Adam PardyTrevor Carrick30122
3Jacob MiddletonLuke Witkowski20122
4Keaton ThompsonJonathan Racine10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Lawson CrouseAlexander BurmistrovPhillip Di Giuseppe60122
2Bracken KearnsAndrew Agozzino40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
160122
2Adam PardyTrevor Carrick40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Lawson Crouse60122
2Alexander BurmistrovBracken Kearns40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
160122
2Adam PardyTrevor Carrick40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Lawson Crouse6012260122
240122Adam PardyTrevor Carrick40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Lawson Crouse60122
2Alexander BurmistrovBracken Kearns40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
160122
2Adam PardyTrevor Carrick40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Lawson CrouseAlexander BurmistrovPhillip Di Giuseppe
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Lawson CrouseAlexander BurmistrovPhillip Di Giuseppe
Extra Forwards
Normal PowerPlayPenalty Kill
, , Phillip Di Giuseppe, Phillip Di Giuseppe
Extra Defensemen
Normal PowerPlayPenalty Kill
Jacob Middleton, Luke Witkowski, Keaton ThompsonJacob MiddletonLuke Witkowski, Keaton Thompson
Penalty Shots
Lawson Crouse, , Alexander Burmistrov, Bracken Kearns, Phillip Di Giuseppe
Goalie
#1 : , #2 :


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals10001000981100010009810000000000021.000914230013117919885611681026100643481416153266.67%30100.00%0792142855.46%616118352.07%1016187154.30%1699107315526331274621
2Americans312000001917221100000141041010000057-220.333193150001311791988134116810261006431012072486466.67%6183.33%0792142855.46%616118352.07%1016187154.30%1699107315526331274621
3Barracuda211000001817110100000812-411000000105520.50018284600131179198883116810261006437826107304250.00%6433.33%0792142855.46%616118352.07%1016187154.30%1699107315526331274621
4Bears5310010030273311001001517-2220000001510570.700305585001311791988198116810261006431937548706350.00%9722.22%0792142855.46%616118352.07%1016187154.30%1699107315526331274621
5Bruins3110001019190201000101315-21100000064240.667193049001311791988139116810261006439128667013646.15%8450.00%1792142855.46%616118352.07%1016187154.30%1699107315526331274621
6Checkers6510000046361032100000211833300000025187100.833468112700131179198825111681026100643220794511017741.18%15660.00%0792142855.46%616118352.07%1016187154.30%1699107315526331274621
7Comets201001001118-71000010089-11010000039-610.2501118290013117919888211681026100643832944307571.43%7528.57%0792142855.46%616118352.07%1016187154.30%1699107315526331274621
8Condors1010000058-3000000000001010000058-300.00057120013117919884811681026100643261041214125.00%3233.33%0792142855.46%616118352.07%1016187154.30%1699107315526331274621
9Crunch512011002030-1020101000813-5311001001217-550.500203252001311791988184116810261006431777567955240.00%16756.25%0792142855.46%616118352.07%1016187154.30%1699107315526331274621
10Devils312000001322-921100000714-71010000068-220.333132336001311791988109116810261006431104319526233.33%2150.00%0792142855.46%616118352.07%1016187154.30%1699107315526331274621
11Falcons1010000078-11010000078-10000000000000.00071219001311791988491168102610064340936136466.67%3233.33%0792142855.46%616118352.07%1016187154.30%1699107315526331274621
12Griffins4210100030282110000001082311010002020060.750304777001311791988156116810261006431736338549555.56%9633.33%0792142855.46%616118352.07%1016187154.30%1699107315526331274621
13Gulls302000011824-600000000000302000011824-610.16718284600131179198814911681026100643107301156113646.15%11281.82%0792142855.46%616118352.07%1016187154.30%1699107315526331274621
14Heat1010000067-11010000067-10000000000000.000610160013117919883811681026100643441621911100.00%3166.67%0792142855.46%616118352.07%1016187154.30%1699107315526331274621
15IceCaps33000000301614110000001183220000001981161.000304979001311791988153116810261006439429112508562.50%6433.33%0792142855.46%616118352.07%1016187154.30%1699107315526331274621
16IceHogs110000001210200000000000110000001210221.0001217290013117919884911681026100643481716208562.50%23-50.00%0792142855.46%616118352.07%1016187154.30%1699107315526331274621
17Marlies302001002127-6201001001216-410100000911-210.167213758001311791988122116810261006431223747424375.00%11645.45%0792142855.46%616118352.07%1016187154.30%1699107315526331274621
18Monsters10100000811-30000000000010100000811-300.00081321001311791988461168102610064339712147457.14%110.00%0792142855.46%616118352.07%1016187154.30%1699107315526331274621
19Penguins303000001823-5202000001113-210100000710-300.00018314900131179198814411681026100643892664518562.50%7442.86%0792142855.46%616118352.07%1016187154.30%1699107315526331274621
20Phantoms311010002217521001000161061010000067-140.667223860001311791988111116810261006431322926419777.78%9633.33%2792142855.46%616118352.07%1016187154.30%1699107315526331274621
21Pirates5310000137361211000001116-5320000012620670.7003768105001311791988218116810261006431806710410210660.00%12741.67%0792142855.46%616118352.07%1016187154.30%1699107315526331274621
22Rampage11000000761000000000001100000076121.0007916001311791988421168102610064335152212150.00%110.00%0792142855.46%616118352.07%1016187154.30%1699107315526331274621
23Reign10100000810-20000000000010100000810-200.00081321001311791988391168102610064341108187571.43%4175.00%0792142855.46%616118352.07%1016187154.30%1699107315526331274621
24Senators30300000720-1320200000512-71010000028-600.000711180013117919881351168102610064311130110569444.44%11645.45%0792142855.46%616118352.07%1016187154.30%1699107315526331274621
25Sound Tigers320010002318521001000139411000000109161.0002335580013117919881261168102610064313448255455100.00%5340.00%1792142855.46%616118352.07%1016187154.30%1699107315526331274621
26Stars1010000079-21010000079-20000000000000.0007121900131179198850116810261006433871223200.00%110.00%0792142855.46%616118352.07%1016187154.30%1699107315526331274621
Total75303305412514535-2138131704310249266-1737171601102265269-4780.520514854136800131179198832311168102610064328589581386126920311657.14%19010544.74%5792142855.46%616118352.07%1016187154.30%1699107315526331274621
28Wild1100000010731100000010730000000000021.00010182800131179198855116810261006433713271533100.00%110.00%0792142855.46%616118352.07%1016187154.30%1699107315526331274621
29Wolf Pack321000002827111000000981211000001919040.6672846740013117919881271168102610064312350553812866.67%10730.00%1792142855.46%616118352.07%1016187154.30%1699107315526331274621
30Wolves11000000981110000009810000000000021.00091524001311791988421168102610064344181417300.00%2150.00%0792142855.46%616118352.07%1016187154.30%1699107315526331274621
31Wolves202000001621-510100000911-210100000710-300.00016264200131179198896116810261006431003817296583.33%6516.67%0792142855.46%616118352.07%1016187154.30%1699107315526331274621
_Since Last GM Reset75303305412514535-2138131704310249266-1737171601102265269-4780.520514854136800131179198832311168102610064328589581386126920311657.14%19010544.74%5792142855.46%616118352.07%1016187154.30%1699107315526331274621
_Vs Conference51232003311333335-228101203210166179-13231380010116715611580.56933356790000131179198821511168102610064318776368608791186756.78%1276945.67%5792142855.46%616118352.07%1016187154.30%1699107315526331274621

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
7578W25148541368323128589581386126900
All Games
GPWLOTWOTL SOWSOLGFGA
7530335412514535
Home Games
GPWLOTWOTL SOWSOLGFGA
3813174310249266
Visitor Games
GPWLOTWOTL SOWSOLGFGA
3717161102265269
Last 10 Games
WLOTWOTL SOWSOL
640000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
20311657.14%19010544.74%5
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
116810261006431311791988
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
792142855.46%616118352.07%1016187154.30%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
1699107315526331274621


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2018-10-023Moose5Gulls9LBoxScore
3 - 2018-10-0418Bears7Moose2LBoxScore
5 - 2018-10-0631Moose9Griffins8WXBoxScore
6 - 2018-10-0744Moose9Checkers7WBoxScore
8 - 2018-10-0959Penguins4Moose3LBoxScore
10 - 2018-10-1171Moose6Pirates7LXXBoxScore
11 - 2018-10-1286Moose4Crunch2WBoxScore
13 - 2018-10-1493Checkers4Moose7WBoxScore
16 - 2018-10-17119Pirates6Moose7WBoxScore
19 - 2018-10-20139Americans4Moose11WBoxScore
20 - 2018-10-21146Moose11IceCaps2WBoxScore
23 - 2018-10-24164Moose6Crunch7LXBoxScore
25 - 2018-10-26178Sound Tigers4Moose5WXBoxScore
27 - 2018-10-28196Moose6Pirates5WBoxScore
29 - 2018-10-30212Bruins9Moose6LBoxScore
32 - 2018-11-02230Moose8Gulls9LXXBoxScore
34 - 2018-11-04242Wolves8Moose9WBoxScore
36 - 2018-11-06257Moose10Barracuda5WBoxScore
38 - 2018-11-08275Wolves11Moose9LBoxScore
40 - 2018-11-10291Moose5Americans7LBoxScore
42 - 2018-11-12304Barracuda12Moose8LBoxScore
46 - 2018-11-16327Heat7Moose6LBoxScore
50 - 2018-11-20345Moose2Senators8LBoxScore
52 - 2018-11-22359Americans6Moose3LBoxScore
54 - 2018-11-24380Admirals8Moose9WXBoxScore
56 - 2018-11-26390Moose7Rampage6WBoxScore
58 - 2018-11-28406Moose14Pirates8WBoxScore
60 - 2018-11-30419Moose6Phantoms7LBoxScore
62 - 2018-12-02430Wolf Pack8Moose9WBoxScore
64 - 2018-12-04445Moose10Sound Tigers9WBoxScore
65 - 2018-12-05458Comets9Moose8LXBoxScore
68 - 2018-12-08477Moose6Bruins4WBoxScore
69 - 2018-12-09490IceCaps8Moose11WBoxScore
72 - 2018-12-12511Wild7Moose10WBoxScore
74 - 2018-12-14527Moose5Condors8LBoxScore
77 - 2018-12-17544Falcons8Moose7LBoxScore
79 - 2018-12-19555Moose7Wolves10LBoxScore
81 - 2018-12-21568Moose2Crunch8LBoxScore
83 - 2018-12-23580Stars9Moose7LBoxScore
87 - 2018-12-27604Penguins9Moose8LBoxScore
88 - 2018-12-28617Moose3Comets9LBoxScore
91 - 2018-12-31636Bears8Moose7LXBoxScore
94 - 2019-01-03659Moose12IceHogs10WBoxScore
95 - 2019-01-04669Sound Tigers5Moose8WBoxScore
99 - 2019-01-08691Senators5Moose4LBoxScore
101 - 2019-01-10706Moose7Penguins10LBoxScore
103 - 2019-01-12716Moose5Gulls6LBoxScore
105 - 2019-01-14730Pirates10Moose4LBoxScore
109 - 2019-01-18755Griffins8Moose10WBoxScore
111 - 2019-01-20768Moose9Marlies11LBoxScore
113 - 2019-01-22786Senators7Moose1LBoxScore
117 - 2019-01-26816Crunch8Moose2LBoxScore
120 - 2019-01-29835Moose8Monsters11LBoxScore
122 - 2019-01-31845Bears2Moose6WBoxScore
124 - 2019-02-02859Moose8Bears6WBoxScore
126 - 2019-02-04878Checkers6Moose7WBoxScore
128 - 2019-02-06889Moose7Bears4WBoxScore
130 - 2019-02-08905Devils11Moose3LBoxScore
131 - 2019-02-09916Moose8IceCaps6WBoxScore
134 - 2019-02-12936Moose8Checkers6WBoxScore
135 - 2019-02-13944Marlies7Moose6LXBoxScore
139 - 2019-02-17969Crunch5Moose6WXBoxScore
140 - 2019-02-18978Moose6Devils8LBoxScore
143 - 2019-02-21998Marlies9Moose6LBoxScore
Trade Deadline --- Trades can’t be done after this day is simulated!
144 - 2019-02-221006Moose8Checkers5WBoxScore
147 - 2019-02-251030Devils3Moose4WBoxScore
148 - 2019-02-261034Moose8Reign10LBoxScore
151 - 2019-03-011059Moose8Wolf Pack10LBoxScore
152 - 2019-03-021067Bruins6Moose7WXXBoxScore
154 - 2019-03-041084Moose6Griffins4WBoxScore
156 - 2019-03-061096Phantoms7Moose8WXBoxScore
158 - 2019-03-081109Moose5Griffins8LBoxScore
162 - 2019-03-121131Checkers8Moose7LBoxScore
163 - 2019-03-131134Moose11Wolf Pack9WBoxScore
165 - 2019-03-151153Phantoms3Moose8WBoxScore
166 - 2019-03-161158Moose-IceCaps-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
0 0 - 0.00% 0$0$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
1,308,429$ 1,293,100$ 1,100,600$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 1,304,743$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 6 7,562$ 45,372$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
201875303305412514535-2138131704310249266-1737171601102265269-478514854136800131179198832311168102610064328589581386126920311657.14%19010544.74%5792142855.46%616118352.07%1016187154.30%1699107315526331274621
Total Regular Season75303305412514535-2138131704310249266-1737171601102265269-478514854136800131179198832311168102610064328589581386126920311657.14%19010544.74%5792142855.46%616118352.07%1016187154.30%1699107315526331274621