Wolf Pack

GP: 60 | W: 26 | L: 27 | OTL: 7 | P: 59
GF: 398 | GA: 418 | PP%: 47.74% | PK%: 47.20%
GM : Dannick Payment | Morale : 50 | Team Overall : 60
Next Games #964 vs Phantoms
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Miles WoodXX100.007556709262629268556376622559597250660
2Jake DebruskX100.007553917667688873387974537552527250660
3Nolan Patrick (R)X100.006943878073677473846871604557577050650
4Brett RitchieX100.008960837778579272256059582562636550630
5Lukas SedlakX100.008055877672547560805858752557576550620
6Jordan NolanXXX99.008376727583567557315657642567696250610
7Austin CzarnikX100.006340998058588762567055602550506550600
8Laurent DauphinX100.007267837267717461766057635447476250600
9Mathieu Joseph (R)XX100.007065826665757864506658625544446350600
10Nicholas BaptisteXX100.006542877874568864325662612548486450600
11Kevin RoyX100.006341917161668365265475642546466950600
12Nick SeelerX99.007374746676658060255447742546466150620
13Kyle Wood (R)X100.008381896881687351254741653944445650600
14Nicolas Meloche (R)X100.007577716277707648253942614044445350570
Scratches
1Cedric PaquetteX100.008556798273577459765759722564676550630
2Vinni Lettieri (R)XX100.007743997265627666386657612546466450600
3Nicolas Roy (R)X100.008078846878747859745954665144446250600
4Spencer Foo (R)X100.007470826870666862505664646144446550590
5William CarrierX100.009661857373536260255556592554546250580
6Blake Speers (R)XX100.007468878268626553664557615444446050570
7Ryan Fitzgerald (R)X100.006661796461676960755362595944446250570
8Brandon Gignac (R)X100.007263936663576047594147594544445350520
9Jakub JerabekX100.007743947769697360255348662550506150620
10Chris BigrasX95.727143957771646456254747712548485950610
11Jeremy Lauzon (R)X100.007675786575586245253639603744445150550
TEAM AVERAGE99.75756085737063756047565763385050635060
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
Scratches
1Tyler Parsons (R)100.00455265704144505245463044444750490
TEAM AVERAGE100.0045526570414450524546304444475049
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Miles WoodWolf Pack (NYR)LW/RW607186157-129230146773249518121.91%42133822.3112243616892134673353.69%24411243072.3503033874
2Nolan PatrickWolf Pack (NYR)C605887145-231574962245915425.89%31111918.6616193525900111314062.88%17326536042.5913001475
3Jake DebruskWolf Pack (NYR)LW606079139-54095593689421816.30%37126721.1210233319971234825248.00%257627072.1934000538
4Jordan NolanWolf Pack (NYR)C/LW/RW605058108-26020140643239917715.48%48118219.7110112127950002271137.50%166136041.8300301663
5Brett RitchieWolf Pack (NYR)RW60305787-2583010549120479125.00%36111618.60691511900004303235.00%1204333001.5602024033
6Nick SeelerWolf Pack (NYR)D6056166-8124701199113257583.79%129170528.43381112122011274000.00%02297000.7700563012
7Kevin RoyWolf Pack (NYR)LW60273057-121004633147398918.37%1880813.4710112000162052.17%233521011.4100000123
8Mathieu JosephWolf Pack (NYR)LW/RW60223052-16608643114336719.30%2578713.1212313000002440.00%251413001.3201000320
9Lukas SedlakWolf Pack (NYR)C60173047-1711510866117396914.53%3182813.81022010000020162.47%4291924011.1300001222
10Chris BigrasWolf Pack (NYR)D5112425-117556707233321.39%83120223.58145255000039000.00%01073000.4200010000
11Kyle WoodWolf Pack (NYR)D6041822-24885089655124237.84%90121720.30213369000063000.00%0252000.3600253000
12Austin CzarnikWolf Pack (NYR)C608715-100025284592917.78%194938.23202322026522057.49%1671515000.6100000002
13Jakub JerabekWolf Pack (NYR)D13213155002521297146.90%2434626.67224518000021000.00%0812000.8700000001
14Nicolas MelocheWolf Pack (NYR)D601121321056556312410154.17%4279813.31011113000021010.00%0235000.3300535000
15Laurent DauphinWolf Pack (NYR)C6044850017152041020.00%32944.910000210000140054.55%3336000.5400000000
16Nicholas BaptisteWolf Pack (NYR)C/RW60718-90016132431629.17%133505.8300000000000016.67%686000.4600000000
17Cedric PaquetteWolf Pack (NYR)C2101-1404620250.00%12110.6600002000000047.62%2110000.9400000000
Team Total or Average906368597965-11960028012078272136652124517.23%6721487916.4266106172126787551024534221459.66%28414965290241.30413152021293333
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Tyler ParsonsWolf Pack (NYR)84210.8675.124450038286175000.000080000
Team Total or Average84210.8675.124450038286175000.000080000


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Austin CzarnikWolf Pack (NYR)C261992-12-12No160 Lbs5 ft9NoNoNo1RFAPro & Farm925,000$0$0$NoLink
Blake SpeersWolf Pack (NYR)C/RW221997-01-02Yes185 Lbs5 ft11NoNoNo3RFAPro & Farm750,000$0$0$NoLink
Brandon GignacWolf Pack (NYR)C211997-11-07Yes173 Lbs5 ft11NoNoNo3RFAPro & Farm700,000$0$0$NoLink
Brett RitchieWolf Pack (NYR)RW251993-06-30No215 Lbs6 ft3NoNoNo2RFAPro & Farm1,800,000$0$0$NoLink
Cedric PaquetteWolf Pack (NYR)C251993-08-13No198 Lbs6 ft1NoNoNo1RFAPro & Farm812,500$0$0$NoLink
Chris BigrasWolf Pack (NYR)D241995-02-21No190 Lbs6 ft1NoNoNo1RFAPro & Farm850,000$0$0$NoLink
Jake DebruskWolf Pack (NYR)LW221996-10-16No183 Lbs6 ft0NoNoNo2RFAPro & Farm950,000$0$0$NoLink
Jakub JerabekWolf Pack (NYR)D271991-05-12No182 Lbs5 ft10NoNoNo4RFAPro & Farm950,000$0$0$NoLink
Jeremy LauzonWolf Pack (NYR)D211997-04-28Yes204 Lbs6 ft1NoNoNo3RFAPro & Farm800,000$0$0$NoLink
Jordan NolanWolf Pack (NYR)C/LW/RW281990-06-23No219 Lbs6 ft3NoNoNo4UFAPro & Farm1,000,000$0$0$NoLink
Kevin RoyWolf Pack (NYR)LW251993-05-19No174 Lbs5 ft9NoNoNo2RFAPro & Farm650,000$0$0$NoLink
Kyle WoodWolf Pack (NYR)D221996-05-03Yes235 Lbs6 ft7NoNoNo2RFAPro & Farm700,000$0$0$NoLink
Laurent DauphinWolf Pack (NYR)C231995-03-27No180 Lbs6 ft1NoNoNo1RFAPro & Farm850,000$0$0$NoLink
Lukas SedlakWolf Pack (NYR)C251993-02-25No203 Lbs6 ft0NoNoNo2RFAPro & Farm850,000$0$0$NoLink
Mathieu JosephWolf Pack (NYR)LW/RW221997-02-09Yes173 Lbs6 ft1NoNoNo3RFAPro & Farm600,000$0$0$NoLink
Miles WoodWolf Pack (NYR)LW/RW231995-09-13No195 Lbs6 ft2NoNoNo2RFAPro & Farm650,000$0$0$NoLink
Nicholas BaptisteWolf Pack (NYR)C/RW231995-08-04No206 Lbs6 ft1NoNoNo1RFAPro & Farm750,000$0$0$NoLink
Nick SeelerWolf Pack (NYR)D251993-06-02No192 Lbs6 ft0NoNoNo4RFAPro & Farm1,000,000$0$0$NoLink
Nicolas MelocheWolf Pack (NYR)D211997-07-18Yes204 Lbs6 ft3NoNoNo3RFAPro & Farm850,000$0$0$NoLink
Nicolas RoyWolf Pack (NYR)C221997-02-05Yes208 Lbs6 ft4NoNoNo3RFAPro & Farm650,000$0$0$NoLink
Nolan PatrickWolf Pack (NYR)C201998-09-19Yes198 Lbs6 ft2NoNoNo3ELCPro & Farm950,000$0$0$NoLink
Ryan FitzgeraldWolf Pack (NYR)C241994-10-19Yes172 Lbs5 ft9NoNoNo3RFAPro & Farm600,000$0$0$NoLink
Spencer FooWolf Pack (NYR)RW251994-01-01Yes185 Lbs6 ft0NoNoNo2RFAPro & Farm1,800,000$0$0$NoLink
Tyler ParsonsWolf Pack (NYR)G211997-09-18Yes185 Lbs6 ft1NoNoNo3RFAPro & Farm800,000$0$0$NoLink
Vinni LettieriWolf Pack (NYR)C/RW241995-02-06Yes195 Lbs5 ft11NoNoNo2RFAPro & Farm950,000$0$0$NoLink
William CarrierWolf Pack (NYR)LW241994-12-19No212 Lbs6 ft2NoNoNo3RFAPro & Farm950,000$0$0$NoLink
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2623.46193 Lbs6 ft12.42889,904$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Miles WoodNolan PatrickBrett Ritchie40122
2Jake DebruskJordan Nolan30122
3Kevin RoyLukas SedlakMathieu Joseph20122
4Miles WoodAustin CzarnikNicholas Baptiste10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Nick Seeler40122
2Kyle Wood30122
3Nicolas MelocheNick Seeler20122
410122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Miles WoodNolan PatrickBrett Ritchie60122
2Jake DebruskJordan Nolan40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Nick Seeler60122
2Kyle Wood40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Miles WoodJake Debrusk60122
2Nolan PatrickBrett Ritchie40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Nick Seeler60122
2Kyle Wood40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Miles Wood60122Nick Seeler60122
2Jake Debrusk40122Kyle Wood40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Miles WoodJake Debrusk60122
2Nolan PatrickBrett Ritchie40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Nick Seeler60122
2Kyle Wood40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Miles WoodNolan PatrickBrett RitchieNick Seeler
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Miles WoodNolan PatrickBrett RitchieNick Seeler
Extra Forwards
Normal PowerPlayPenalty Kill
Laurent Dauphin, Lukas Sedlak, Austin CzarnikLaurent Dauphin, Lukas SedlakAustin Czarnik
Extra Defensemen
Normal PowerPlayPenalty Kill
Nicolas Meloche, Kyle Wood, Nick SeelerNicolas MelocheKyle Wood, Nick Seeler
Penalty Shots
Miles Wood, Jake Debrusk, Nolan Patrick, Brett Ritchie,
Goalie
#1 : , #2 :


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals10100000810-20000000000010100000810-200.0008101800921681346366558357382635119284375.00%2150.00%054698855.26%51391955.82%756136155.55%131776712354911075564
2Americans202000001320-71010000079-210100000611-500.0001321340092168134670655835738269243635100.00%3233.33%154698855.26%51391955.82%756136155.55%131776712354911075564
3Barracuda211000001316-310100000410-61100000096320.500132336009216813466565583573826934410302150.00%5340.00%054698855.26%51391955.82%756136155.55%131776712354911075564
4Bears321000002324-111000000963211000001418-440.667233962009216813461036558357382613352834910770.00%14657.14%154698855.26%51391955.82%756136155.55%131776712354911075564
5Bruins30300000821-131010000025-320200000616-1000.0008142200921681346103655835738261084047817228.57%6350.00%054698855.26%51391955.82%756136155.55%131776712354911075564
6Checkers422000002824431200000191811100000096340.500284573009216813461376558357382615247149410110.00%7271.43%054698855.26%51391955.82%756136155.55%131776712354911075564
7Comets220000001912722000000191270000000000041.000193251009216813467965583573826672114627457.14%2150.00%054698855.26%51391955.82%756136155.55%131776712354911075564
8Condors1000010056-1000000000001000010056-110.5005914009216813463565583573826381602011100.00%000.00%054698855.26%51391955.82%756136155.55%131776712354911075564
9Crunch311001001418-41100000062420100100816-830.50014253900921681346111655835738269232646910220.00%7442.86%054698855.26%51391955.82%756136155.55%131776712354911075564
10Devils513001003038-82100010014122303000001626-1030.3003048780092168134617165583573826223581611710660.00%8450.00%054698855.26%51391955.82%756136155.55%131776712354911075564
11Falcons11000000963110000009630000000000021.000916250092168134645655835738264415201822100.00%6350.00%054698855.26%51391955.82%756136155.55%131776712354911075564
12Griffins210000011614200000000000210000011614230.750162945009216813469365583573826702721548337.50%3233.33%054698855.26%51391955.82%756136155.55%131776712354911075564
13Heat1100000010461100000010460000000000021.00010162600921681346376558357382637197184375.00%10100.00%054698855.26%51391955.82%756136155.55%131776712354911075564
14IceCaps21100000141041010000046-211000000104620.500142438009216813468265583573826652526455480.00%3166.67%054698855.26%51391955.82%756136155.55%131776712354911075564
15IceHogs10100000913-410100000913-40000000000000.000916250092168134643655835738266319401522100.00%660.00%054698855.26%51391955.82%756136155.55%131776712354911075564
16Marlies540010003922172200000017893200100022148101.0003962101009216813461896558357382618460439813430.77%9455.56%054698855.26%51391955.82%756136155.55%131776712354911075564
17Monsters1010000026-41010000026-40000000000000.000246009216813463165583573826357611000.00%3166.67%054698855.26%51391955.82%756136155.55%131776712354911075564
18Moose1010000089-1000000000001010000089-100.0008122000921681346466558357382643128213266.67%4325.00%054698855.26%51391955.82%756136155.55%131776712354911075564
19Penguins20101000913-4100010006511010000038-520.5009152400921681346676558357382662173458500.00%2150.00%154698855.26%51391955.82%756136155.55%131776712354911075564
20Phantoms201001001013-3201001001013-30000000000010.2501016260092168134674655835738266526839100.00%440.00%154698855.26%51391955.82%756136155.55%131776712354911075564
21Pirates312000002425-1211000001815310100000610-420.33324416500921681346120655835738261082558642150.00%9633.33%054698855.26%51391955.82%756136155.55%131776712354911075564
22Rampage10000010761000000000001000001076121.000781500921681346396558357382648112205360.00%110.00%054698855.26%51391955.82%756136155.55%131776712354911075564
23Senators412001001624-8311001001315-21010000039-630.3751623390092168134615165583573826124285310110550.00%10280.00%054698855.26%51391955.82%756136155.55%131776712354911075564
24Sound Tigers411010013231131001001252321010000078-150.6253252840092168134616965583573826198692888171058.82%4325.00%154698855.26%51391955.82%756136155.55%131776712354911075564
25Stars10100000710-310100000710-30000000000000.0007101700921681346386558357382640130188337.50%000.00%054698855.26%51391955.82%756136155.55%131776712354911075564
Total60222703512398418-2031131202301210198122991501211188220-32590.492398651104900921681346224265583573826235178664213201557447.74%1256647.20%554698855.26%51391955.82%756136155.55%131776712354911075564
27Wild1100000010550000000000011000000105521.000101727009216813464665583573826331791922100.00%20100.00%054698855.26%51391955.82%756136155.55%131776712354911075564
28Wolves1100000010730000000000011000000107321.000101727009216813463565583573826541512194250.00%110.00%054698855.26%51391955.82%756136155.55%131776712354911075564
29Wolves10100000511-60000000000010100000511-600.000571200921681346276558357382645174292150.00%3233.33%054698855.26%51391955.82%756136155.55%131776712354911075564
_Since Last GM Reset60222703512398418-2031131202301210198122991501211188220-32590.492398651104900921681346224265583573826235178664213201557447.74%1256647.20%554698855.26%51391955.82%756136155.55%131776712354911075564
_Vs Conference43142103401268292-24239802301150137132051301100118155-37390.4532684377050092168134615936558357382616495344889591044442.31%904550.00%554698855.26%51391955.82%756136155.55%131776712354911075564
_Vs Division212602201134149-1513210220185832805000004966-17110.2621342193530092168134675265583573826868276189456532445.28%422150.00%454698855.26%51391955.82%756136155.55%131776712354911075564

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
6059W1398651104922422351786642132000
All Games
GPWLOTWOTL SOWSOLGFGA
6022273512398418
Home Games
GPWLOTWOTL SOWSOLGFGA
3113122301210198
Visitor Games
GPWLOTWOTL SOWSOLGFGA
299151211188220
Last 10 Games
WLOTWOTL SOWSOL
640000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
1557447.74%1256647.20%5
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
65583573826921681346
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
54698855.26%51391955.82%756136155.55%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
131776712354911075564


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
2 - 2018-10-0310Wolf Pack9Marlies4WBoxScore
4 - 2018-10-0525Checkers5Wolf Pack2LBoxScore
6 - 2018-10-0736Phantoms3Wolf Pack2LXBoxScore
9 - 2018-10-1063Senators3Wolf Pack5WBoxScore
11 - 2018-10-1283Wolf Pack8Griffins9LXXBoxScore
12 - 2018-10-1389Wolf Pack6Devils9LBoxScore
15 - 2018-10-16109Sound Tigers4Wolf Pack6WBoxScore
17 - 2018-10-18127Comets6Wolf Pack8WBoxScore
20 - 2018-10-21149Wolf Pack5Devils9LBoxScore
22 - 2018-10-23160Penguins5Wolf Pack6WXBoxScore
24 - 2018-10-25172Wolf Pack3Bruins9LBoxScore
26 - 2018-10-27188Checkers8Wolf Pack4LBoxScore
28 - 2018-10-29206Wolf Pack6Bears14LBoxScore
30 - 2018-10-31221Marlies3Wolf Pack10WBoxScore
32 - 2018-11-02235Wolf Pack5Marlies3WBoxScore
34 - 2018-11-04244Wolf Pack8Griffins5WBoxScore
36 - 2018-11-06255Wolf Pack10Wolves7WBoxScore
37 - 2018-11-07270Falcons6Wolf Pack9WBoxScore
40 - 2018-11-10290Wolf Pack7Rampage6WXXBoxScore
42 - 2018-11-12298IceHogs13Wolf Pack9LBoxScore
45 - 2018-11-15318Wolf Pack6Pirates10LBoxScore
47 - 2018-11-17329Pirates9Wolf Pack8LBoxScore
50 - 2018-11-20348Wolf Pack10Wild5WBoxScore
52 - 2018-11-22360Phantoms10Wolf Pack8LBoxScore
54 - 2018-11-24376Wolf Pack10IceCaps4WBoxScore
56 - 2018-11-26389Wolf Pack3Senators9LBoxScore
57 - 2018-11-27398Bruins5Wolf Pack2LBoxScore
60 - 2018-11-30421Senators6Wolf Pack3LBoxScore
62 - 2018-12-02430Wolf Pack8Moose9LBoxScore
64 - 2018-12-04447Wolf Pack3Bruins7LBoxScore
65 - 2018-12-05457Senators6Wolf Pack5LXBoxScore
68 - 2018-12-08478Wolf Pack9Barracuda6WBoxScore
69 - 2018-12-09489Pirates6Wolf Pack10WBoxScore
72 - 2018-12-12512Americans9Wolf Pack7LBoxScore
73 - 2018-12-13521Wolf Pack5Devils8LBoxScore
77 - 2018-12-17545Heat4Wolf Pack10WBoxScore
81 - 2018-12-21569Stars10Wolf Pack7LBoxScore
86 - 2018-12-26596Devils5Wolf Pack4LXBoxScore
88 - 2018-12-28615Wolf Pack5Crunch6LXBoxScore
89 - 2018-12-29626Checkers5Wolf Pack13WBoxScore
92 - 2019-01-01644Wolf Pack8Admirals10LBoxScore
94 - 2019-01-03657Sound Tigers10Wolf Pack11WXBoxScore
96 - 2019-01-05671Wolf Pack3Penguins8LBoxScore
98 - 2019-01-07684Wolf Pack5Condors6LXBoxScore
100 - 2019-01-09694IceCaps6Wolf Pack4LBoxScore
102 - 2019-01-11710Wolf Pack8Marlies7WXBoxScore
104 - 2019-01-13727Sound Tigers9Wolf Pack8LXXBoxScore
107 - 2019-01-16744Wolf Pack5Wolves11LBoxScore
109 - 2019-01-18758Marlies5Wolf Pack7WBoxScore
111 - 2019-01-20772Wolf Pack7Sound Tigers8LBoxScore
113 - 2019-01-22787Bears6Wolf Pack9WBoxScore
117 - 2019-01-26812Comets6Wolf Pack11WBoxScore
119 - 2019-01-28829Wolf Pack8Bears4WBoxScore
122 - 2019-01-31846Devils7Wolf Pack10WBoxScore
125 - 2019-02-03872Barracuda10Wolf Pack4LBoxScore
127 - 2019-02-05883Wolf Pack9Checkers6WBoxScore
129 - 2019-02-07900Wolf Pack6Americans11LBoxScore
130 - 2019-02-08908Monsters6Wolf Pack2LBoxScore
132 - 2019-02-10922Wolf Pack3Crunch10LBoxScore
135 - 2019-02-13938Crunch2Wolf Pack6WBoxScore
138 - 2019-02-16964Phantoms-Wolf Pack-
139 - 2019-02-17972Wolf Pack-Penguins-
142 - 2019-02-20996Penguins-Wolf Pack-
Trade Deadline --- Trades can’t be done after this day is simulated!
144 - 2019-02-221007Wolf Pack-Wolves-
147 - 2019-02-251028Griffins-Wolf Pack-
149 - 2019-02-271042Wolf Pack-IceCaps-
151 - 2019-03-011059Moose-Wolf Pack-
152 - 2019-03-021071Wolf Pack-Sound Tigers-
155 - 2019-03-051089Penguins-Wolf Pack-
158 - 2019-03-081107Wolf Pack-Phantoms-
160 - 2019-03-101120Wolf Pack-Gulls-
161 - 2019-03-111123Wolf Pack-Reign-
163 - 2019-03-131134Moose-Wolf Pack-
165 - 2019-03-151151Wolf Pack-Gulls-
167 - 2019-03-171161Americans-Wolf Pack-
168 - 2019-03-181167Wolf Pack-Phantoms-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
7 0 - 0.00% 0$0$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
1,807,845$ 2,313,750$ 1,885,000$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 1,800,205$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 36 13,531$ 487,116$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
201860222703512398418-2031131202301210198122991501211188220-3259398651104900921681346224265583573826235178664213201557447.74%1256647.20%554698855.26%51391955.82%756136155.55%131776712354911075564
Total Regular Season60222703512398418-2031131202301210198122991501211188220-3259398651104900921681346224265583573826235178664213201557447.74%1256647.20%554698855.26%51391955.82%756136155.55%131776712354911075564