Admirals

GP: 63 | W: 32 | L: 24 | OTL: 7 | P: 71
GF: 460 | GA: 465 | PP%: 51.12% | PK%: 37.25%
GM : Stephane Boud | Morale : 50 | Team Overall : 59
Next Games #956 vs Marlies
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Daniel CarrX100.007143927870627267317170642556567050640
2Nick CousinsX100.008153867561648364496070696761626950640
3Charles HudonX100.008344847463668270497366592553536950630
4Jack RoslovicX100.006742977468628166447470592546467050630
5Jacob de La RoseXX100.008857847778627959746258702558596550630
6Andrew MillerXX100.007265886765697069507163646044446650620
7Dylan Strome (R)X100.006141887371647170766971562547476850620
8Martin FrkX100.007644927171568576256670532552526950620
9Frank VatranoXXX100.007744778275576265505770552558586650610
10Michael McCarronXX100.009999537291528457735655672552526250610
11Sam Anas (R)XX100.006857926257798267806565626244446750610
12Ryan HaggertyX100.007773866873666766506365666244446650610
13Joakim RyanX100.006541957767717961255248692551516150620
14T.J. BrennanX100.007578676478798461255453645045456150610
15Victor Mete (R)X100.005540978165686367255247642555555950610
16MacKenzie WeegarX100.008365846868657763255048642551516050610
17Darren Raddysh (R)X100.007973946573687253254051644844445950590
Scratches
1Tanner FritzX100.008244916969638264526159692547476550610
2Nikita ScherbakXX100.006942907666657766255868582546466750600
3Danick MartelXX100.006457816757768062785366596344446450590
4Michael MerschX100.007873916873565563506162665944446550590
5Lucas WallmarkX100.007743937665558257805059562545456250570
6Axel Holmstrom (R)X100.008072976272667054685648654644445850570
7Daniel PribylX100.008074956374585957715654655144446050570
8Matt CareyX100.007071696771616355694561605844445950560
9Kyle PlatzerX100.007366906766626454684756615344445950550
10Michael Carcone (R)X100.006462706362747955504858575544445950550
11Tim BozonX100.007572826272585955504858625544445950550
12Markus EisenschmidXX100.007267846367616450634748604644445450530
13Jean-Christophe Beaudin (R)XX100.007569906269636749614746614444445550530
14Angelo MiceliX100.00596269664948595256495255504444150510
15Brennan Menell (R)X100.007466936466798651254345614344445650580
16Rinat ValievX100.008076886476606352254345644345455650580
17James de Haas (R)X100.008278906678555750254540653844445450570
18Jacob GravesX100.007472786572535451253751614844445650550
19Mac BennettX100.007467896267576046254641603944445150540
20Simon Bourque (R)X100.007267826367647044253339583744445050540
TEAM AVERAGE100.00746186696963715948545762414747605059
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Matthew O'Connor100.00526581814852505749493044445350550
2Zachary Fucale100.00516379744751505648483044445250530
Scratches
TEAM AVERAGE100.0052648078485250574949304444535054
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Daniel CarrAdmirals (Nas)LW63769517122420944838610125919.69%37130420.71222850431260003113243.08%6585260102.6212013987
2Charles HudonAdmirals (Nas)LW63395695-10291585482016511919.40%3195215.129122114660001112149.28%695025021.9900201252
3Martin FrkAdmirals (Nas)RW63444892-13161063392047510821.57%3194615.02126181666000006244.94%895321031.9400020326
4Nick CousinsAdmirals (Nas)C63235881-1250107192101396922.77%2694314.9731417567000003048.93%13491938001.7211011012
5Dylan StromeAdmirals (Nas)C631549647001918139518310.79%155969.4700000000002160.45%1343416002.1400000012
6Jack RoslovicAdmirals (Nas)C633132635553042195579515.90%1679912.694610727000071047.93%4114218011.5800001020
7Joakim RyanAdmirals (Nas)D6365561-51755910515766743.82%128175327.8421113897011682000.00%228107000.7000001010
8T.J. BrennanAdmirals (Nas)D6374855-42151651108511846535.93%101159625.3476131596011461110.00%01077000.6900328010
9Jacob de La RoseAdmirals (Nas)C/LW63112940560685797434811.34%2976812.200772182134190070.00%302734001.0400000002
10Andrew MillerAdmirals (Nas)C/RW5119183711610352481375923.46%1954310.6510115000001038.46%132318001.3600020011
11Derek MacKenziePredatorsC/LW1642529-12814522392871414.29%1329818.6838114270000231065.09%464214001.9401333001
12Darren RaddyshAdmirals (Nas)D63077-25630301314470.00%215238.310000200000000.00%0025000.2700114000
13Ryan HaggertyAdmirals (Nas)RW111454005613227.69%31029.320000000000000.00%015000.9800000000
Team Total or Average708276524800-118441215691616173459399015.92%4701113015.7263981611156032351821820752.09%26263744240161.442491222142223
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Matthew O'ConnorAdmirals (Nas)43010.8914.41245001816598000.667344000
Team Total or Average43010.8914.41245001816598000.667344000


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Andrew MillerAdmirals (Nas)C/RW301988-09-17No181 Lbs5 ft10NoNoNo1UFAPro & Farm800,000$0$0$NoLink
Angelo MiceliAdmirals (Nas)C241994-03-01No179 Lbs5 ft9NoNoNo1RFAPro & Farm550,000$0$0$NoLink
Axel HolmstromAdmirals (Nas)C221996-06-29Yes198 Lbs6 ft0NoNoNo3RFAPro & Farm500,000$0$0$NoLink
Brennan MenellAdmirals (Nas)D211997-05-24Yes183 Lbs5 ft11NoNoNo3RFAPro & Farm750,000$0$0$NoLink
Charles HudonAdmirals (Nas)LW241994-06-23No195 Lbs5 ft10NoNoNo2RFAPro & Farm850,000$0$0$NoLink
Danick MartelAdmirals (Nas)C/LW241994-12-12No162 Lbs5 ft8NoNoNo2RFAPro & Farm700,000$0$0$NoLink
Daniel CarrAdmirals (Nas)LW271991-11-01No188 Lbs6 ft0NoNoNo1RFAPro & Farm800,000$0$0$NoLink
Daniel PribylAdmirals (Nas)C261992-12-17No192 Lbs6 ft4NoNoNo1RFAPro & Farm650,000$0$0$NoLink
Darren RaddyshAdmirals (Nas)D221996-02-28Yes182 Lbs6 ft0NoNoNo4RFAPro & Farm900,000$0$0$NoLink
Dylan StromeAdmirals (Nas)C211997-03-07Yes185 Lbs6 ft3NoNoNo3RFAPro & Farm950,000$0$0$NoLink
Frank VatranoAdmirals (Nas)C/LW/RW241994-03-14No201 Lbs5 ft9NoNoNo1RFAPro & Farm900,000$0$0$NoLink
Jack RoslovicAdmirals (Nas)C221997-01-28No187 Lbs6 ft1NoNoNo2RFAPro & Farm900,000$0$0$NoLink
Jacob GravesAdmirals (Nas)D231995-03-27No192 Lbs6 ft2NoNoNo2RFAPro & Farm650,000$0$0$NoLink
Jacob de La RoseAdmirals (Nas)C/LW231995-05-20No214 Lbs6 ft3NoNoNo2RFAPro & Farm950,000$0$0$NoLink
James de HaasAdmirals (Nas)D241994-05-03Yes210 Lbs6 ft4NoNoNo1RFAPro & Farm0$0$NoLink
Jean-Christophe BeaudinAdmirals (Nas)C/RW211997-03-25Yes185 Lbs6 ft1NoNoNo3RFAPro & Farm750,000$0$0$NoLink
Joakim RyanAdmirals (Nas)D251993-06-17No185 Lbs5 ft11NoNoNo1RFAPro & Farm500,000$0$0$NoLink
Kyle PlatzerAdmirals (Nas)C231995-03-03No172 Lbs6 ft0NoNoNo1RFAPro & Farm650,000$0$0$NoLink
Lucas WallmarkAdmirals (Nas)C231995-09-05No176 Lbs6 ft0NoNoNo2RFAPro & Farm650,000$0$0$NoLink
Mac BennettAdmirals (Nas)D271991-03-25No182 Lbs6 ft0NoNoNo1RFAPro & Farm600,000$0$0$NoLink
MacKenzie WeegarAdmirals (Nas)D251994-01-07No212 Lbs6 ft0NoNoNo1RFAPro & Farm600,000$0$0$NoLink
Markus EisenschmidAdmirals (Nas)C/RW241995-01-22No169 Lbs6 ft0NoNoNo1RFAPro & Farm550,000$0$0$NoLink
Martin FrkAdmirals (Nas)RW251993-10-04No194 Lbs6 ft1NoNoNo2RFAPro & Farm950,000$0$0$NoLink
Matt CareyAdmirals (Nas)LW261992-02-28No195 Lbs6 ft0NoNoNo1RFAPro & Farm750,000$0$0$NoLink
Matthew O'ConnorAdmirals (Nas)G271992-02-14No186 Lbs6 ft5NoNoNo1RFAPro & Farm900,000$0$0$NoLink
Michael CarconeAdmirals (Nas)LW221996-05-18Yes170 Lbs5 ft10NoNoNo1RFAPro & Farm700,000$0$0$NoLink
Michael McCarronAdmirals (Nas)C/RW231995-03-06No231 Lbs6 ft6NoNoNo1RFAPro & Farm900,000$0$0$NoLink
Michael MerschAdmirals (Nas)LW271992-01-10No213 Lbs6 ft2NoNoNo2RFAPro & Farm600,000$0$0$NoLink
Nick CousinsAdmirals (Nas)C251993-07-19No188 Lbs5 ft10NoNoNo3RFAPro & Farm900,000$0$0$NoLink
Nikita ScherbakAdmirals (Nas)LW/RW231995-12-29No190 Lbs6 ft2NoNoNo1RFAPro & Farm900,000$0$0$NoLink
Rinat ValievAdmirals (Nas)D231995-05-11No215 Lbs6 ft3NoNoNo1RFAPro & Farm750,000$0$0$NoLink
Ryan HaggertyAdmirals (Nas)RW251993-03-03No201 Lbs6 ft0NoNoNo1RFAPro & Farm700,000$0$0$NoLink
Sam AnasAdmirals (Nas)C/RW251993-05-31Yes163 Lbs5 ft8NoNoNo1RFAPro & Farm700,000$0$0$NoLink
Simon BourqueAdmirals (Nas)D221997-01-12Yes183 Lbs6 ft0NoNoNo3RFAPro & Farm500,000$0$0$NoLink
T.J. BrennanAdmirals (Nas)D281990-04-03No216 Lbs6 ft1NoNoNo1UFAPro & Farm800,000$0$0$NoLink
Tanner FritzAdmirals (Nas)C271991-08-20No192 Lbs5 ft11NoNoNo3RFAPro & Farm600,000$0$0$NoLink
Tim BozonAdmirals (Nas)LW241994-03-24No196 Lbs6 ft1NoNoNo1RFAPro & Farm750,000$0$0$NoLink
Victor MeteAdmirals (Nas)D201998-06-07Yes174 Lbs5 ft10NoNoNo3ELCPro & Farm650,000$0$0$NoLink
Zachary FucaleAdmirals (Nas)G231995-05-27No187 Lbs6 ft2NoNoNo1RFAPro & Farm850,000$0$0$NoLink
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
3924.10190 Lbs6 ft01.69719,231$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Daniel Carr40122
2Charles HudonNick CousinsMartin Frk30122
3Jacob de La RoseJack Roslovic20122
4Dylan Strome10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Joakim RyanT.J. Brennan40122
230122
3Darren RaddyshJoakim Ryan20122
4T.J. Brennan10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Daniel Carr60122
2Charles HudonNick CousinsMartin Frk40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Joakim RyanT.J. Brennan60122
240122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
160122
2Daniel CarrCharles Hudon40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Joakim RyanT.J. Brennan60122
240122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
160122Joakim RyanT.J. Brennan60122
24012240122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
160122
2Daniel CarrCharles Hudon40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Joakim RyanT.J. Brennan60122
240122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Daniel CarrJoakim RyanT.J. Brennan
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Daniel CarrJoakim RyanT.J. Brennan
Extra Forwards
Normal PowerPlayPenalty Kill
Jack Roslovic, Jacob de La Rose, Jack Roslovic, Jacob de La Rose
Extra Defensemen
Normal PowerPlayPenalty Kill
Darren Raddysh, , Joakim RyanDarren Raddysh, Joakim Ryan
Penalty Shots
, , Daniel Carr, Charles Hudon, Nick Cousins
Goalie
#1 : , #2 :


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Americans11000000651110000006510000000000021.000691500104194159427757870840222814218100.00%10100.00%0532109948.41%452101544.53%709158044.87%144490113044981057550
2Barracuda211000001315-21010000027-511000000118320.5001322350010419415948475787084022783317274125.00%6516.67%0532109948.41%452101544.53%709158044.87%144490113044981057550
3Bears10100000610-40000000000010100000610-400.00061016001041941594317578708402242133019200.00%5340.00%0532109948.41%452101544.53%709158044.87%144490113044981057550
4Bruins1010000049-5000000000001010000049-500.0004812001041941594457578708402235206223266.67%3233.33%0532109948.41%452101544.53%709158044.87%144490113044981057550
5Comets301011002426-210100000810-2200011001616030.5002444680010419415941197578708402212933285113646.15%9633.33%1532109948.41%452101544.53%709158044.87%144490113044981057550
6Condors220000001810800000000000220000001810841.0001831490010419415947475787084022812671318450.00%8362.50%0532109948.41%452101544.53%709158044.87%144490113044981057550
7Crunch1010000068-2000000000001010000068-200.00061016001041941594397578708402230124235240.00%220.00%0532109948.41%452101544.53%709158044.87%144490113044981057550
8Devils11000000954110000009540000000000021.0009152400104194159443757870840222615161433100.00%30100.00%0532109948.41%452101544.53%709158044.87%144490113044981057550
9Falcons211000001714311000000102810100000712-520.5001724410010419415946875787084022851390397457.14%10460.00%0532109948.41%452101544.53%709158044.87%144490113044981057550
10Griffins312000001825-711000000761202000001119-820.333182947001041941594107757870840221303432519666.67%6433.33%1532109948.41%452101544.53%709158044.87%144490113044981057550
11Gulls321000002020022000000161331010000047-340.667203858001041941594139757870840221093121517457.14%8625.00%0532109948.41%452101544.53%709158044.87%144490113044981057550
12Heat310001103026421000010221751000010089-150.833304979001041941594135757870840221414258487571.43%9633.33%0532109948.41%452101544.53%709158044.87%144490113044981057550
13IceCaps1100000010910000000000011000000109121.00010162600104194159440757870840224519151811100.00%5340.00%0532109948.41%452101544.53%709158044.87%144490113044981057550
14IceHogs513001003548-13211000001619-3302001001929-1030.300356095001041941594210757870840222557631799666.67%880.00%0532109948.41%452101544.53%709158044.87%144490113044981057550
15Monsters64200000524393210000027216321000002522380.6675284136001041941594219757870840222656543103241458.33%9722.22%0532109948.41%452101544.53%709158044.87%144490113044981057550
16Moose1000010089-1000000000001000010089-110.50081523001041941594487578708402256121616300.00%3233.33%0532109948.41%452101544.53%709158044.87%144490113044981057550
17Penguins20100100912-320100100912-30000000000010.25091423101041941594917578708402265187308112.50%110.00%0532109948.41%452101544.53%709158044.87%144490113044981057550
18Phantoms10100000410-60000000000010100000410-600.0004711001041941594317578708402249147193133.33%110.00%0532109948.41%452101544.53%709158044.87%144490113044981057550
19Pirates22000000209111100000093611000000116541.000203656001041941594997578708402269258273266.67%4250.00%0532109948.41%452101544.53%709158044.87%144490113044981057550
20Rampage1100000011650000000000011000000116521.000112031001041941594487578708402236169194375.00%2150.00%1532109948.41%452101544.53%709158044.87%144490113044981057550
21Reign4210000127261311000012021-11100000075250.6252745720010419415941547578708402217035226211654.55%6183.33%1532109948.41%452101544.53%709158044.87%144490113044981057550
22Senators2110000012932110000012930000000000020.5001223350010419415948175787084022481523404250.00%4250.00%0532109948.41%452101544.53%709158044.87%144490113044981057550
23Sound Tigers10100000412-810100000412-80000000000000.00047110010419415943375787084022581840142150.00%5260.00%0532109948.41%452101544.53%709158044.87%144490113044981057550
24Stars311010002425-110001000981211000001517-240.6672440640010419415941327578708402211838184611654.55%9722.22%1532109948.41%452101544.53%709158044.87%144490113044981057550
Total63292402611460465-530178012112262032333121601400234262-28710.5634607841244201041941594248375787084022259678867910331789151.12%1539637.25%5532109948.41%452101544.53%709158044.87%144490113044981057550
26Wild312000001321-81100000076120200000615-920.33313243710104194159411075787084022913218507228.57%9722.22%0532109948.41%452101544.53%709158044.87%144490113044981057550
27Wolf Pack1100000010821100000010820000000000021.000101929001041941594357578708402236311162150.00%4325.00%0532109948.41%452101544.53%709158044.87%144490113044981057550
28Wolves63200100413922100010014131422000002726170.583417111200104194159420575787084022268106348916743.75%12833.33%0532109948.41%452101544.53%709158044.87%144490113044981057550
29Wolves11000000963110000009630000000000021.000914230010419415943675787084022531021111100.00%10100.00%0532109948.41%452101544.53%709158044.87%144490113044981057550
_Since Last GM Reset63292402611460465-530178012112262032333121601400234262-28710.5634607841244201041941594248375787084022259678867910331789151.12%1539637.25%5532109948.41%452101544.53%709158044.87%144490113044981057550
_Vs Conference47221702411352350221125011111671491826101201300185201-16550.58535259594710104194159418407578708402220095904947571387554.35%1127334.82%5532109948.41%452101544.53%709158044.87%144490113044981057550
_Vs Division199900200132148-16652001004646013470010086102-16200.52613223036210104194159475375787084022824280126299502448.00%433323.26%2532109948.41%452101544.53%709158044.87%144490113044981057550

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
6371L1460784124424832596788679103320
All Games
GPWLOTWOTL SOWSOLGFGA
6329242611460465
Home Games
GPWLOTWOTL SOWSOLGFGA
301781211226203
Visitor Games
GPWLOTWOTL SOWSOLGFGA
3312161400234262
Last 10 Games
WLOTWOTL SOWSOL
530200
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
1789151.12%1539637.25%5
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
757870840221041941594
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
532109948.41%452101544.53%709158044.87%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
144490113044981057550


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
2 - 2018-10-0311Monsters6Admirals9WBoxScore
4 - 2018-10-0527Admirals9Condors4WBoxScore
6 - 2018-10-0737Reign4Admirals3LXXBoxScore
7 - 2018-10-0848Admirals6Wolves5WBoxScore
9 - 2018-10-1070Heat6Admirals10WBoxScore
11 - 2018-10-1284Admirals2Wild9LBoxScore
13 - 2018-10-1495Admirals7Monsters9LBoxScore
16 - 2018-10-17114Griffins6Admirals7WBoxScore
17 - 2018-10-18126Admirals7Wolves9LBoxScore
19 - 2018-10-20140Admirals6Griffins10LBoxScore
21 - 2018-10-22153Monsters10Admirals7LBoxScore
24 - 2018-10-25173Falcons2Admirals10WBoxScore
26 - 2018-10-27186Admirals8Comets9LXBoxScore
28 - 2018-10-29205Wolves7Admirals9WBoxScore
30 - 2018-10-31218Admirals3IceHogs11LBoxScore
31 - 2018-11-01222Admirals4Wolves7LBoxScore
34 - 2018-11-04241Admirals6Bears10LBoxScore
35 - 2018-11-05249Senators4Admirals8WBoxScore
38 - 2018-11-08274Sound Tigers12Admirals4LBoxScore
40 - 2018-11-10286Admirals11Barracuda8WBoxScore
42 - 2018-11-12302Americans5Admirals6WBoxScore
44 - 2018-11-14314Admirals10IceCaps9WBoxScore
46 - 2018-11-16325Admirals6Crunch8LBoxScore
49 - 2018-11-19340Gulls6Admirals7WBoxScore
52 - 2018-11-22366Heat11Admirals12WXXBoxScore
54 - 2018-11-24380Admirals8Moose9LXBoxScore
56 - 2018-11-26392Admirals6Stars10LBoxScore
58 - 2018-11-28400Gulls7Admirals9WBoxScore
60 - 2018-11-30423Admirals7Falcons12LBoxScore
62 - 2018-12-02433Devils5Admirals9WBoxScore
64 - 2018-12-04446Admirals9Monsters7WBoxScore
65 - 2018-12-05460IceHogs7Admirals8WBoxScore
67 - 2018-12-07474Admirals8Heat9LXBoxScore
70 - 2018-12-10494Barracuda7Admirals2LBoxScore
73 - 2018-12-13517Admirals10Wolves5WBoxScore
74 - 2018-12-14524Monsters5Admirals11WBoxScore
78 - 2018-12-18549IceHogs12Admirals8LBoxScore
80 - 2018-12-20559Admirals9Condors6WBoxScore
84 - 2018-12-24583Senators5Admirals4LBoxScore
87 - 2018-12-27605Reign10Admirals6LBoxScore
89 - 2018-12-29623Admirals7Reign5WBoxScore
90 - 2018-12-30630Admirals7IceHogs8LBoxScore
92 - 2019-01-01644Wolf Pack8Admirals10WBoxScore
95 - 2019-01-04666Admirals9Monsters6WBoxScore
97 - 2019-01-06677Comets10Admirals8LBoxScore
99 - 2019-01-08689Admirals4Gulls7LBoxScore
101 - 2019-01-10705Stars8Admirals9WXBoxScore
103 - 2019-01-12717Admirals11Rampage6WBoxScore
106 - 2019-01-15736Wolves6Admirals9WBoxScore
108 - 2019-01-17748Admirals9IceHogs10LXBoxScore
110 - 2019-01-19766Wild6Admirals7WBoxScore
112 - 2019-01-21776Admirals5Griffins9LBoxScore
114 - 2019-01-23790Admirals4Bruins9LBoxScore
115 - 2019-01-24802Pirates3Admirals9WBoxScore
117 - 2019-01-26811Admirals4Phantoms10LBoxScore
119 - 2019-01-28832Wolves6Admirals5LXBoxScore
121 - 2019-01-30843Admirals4Wild6LBoxScore
123 - 2019-02-01855Admirals8Comets7WXBoxScore
124 - 2019-02-02864Reign7Admirals11WBoxScore
128 - 2019-02-06894Penguins5Admirals4LXBoxScore
130 - 2019-02-08904Admirals11Pirates6WBoxScore
132 - 2019-02-10923Admirals9Stars7WBoxScore
133 - 2019-02-11929Penguins7Admirals5LBoxScore
137 - 2019-02-15956Admirals-Marlies-
138 - 2019-02-16959Condors-Admirals-
141 - 2019-02-19984Rampage-Admirals-
143 - 2019-02-211005Admirals-Wild-
Trade Deadline --- Trades can’t be done after this day is simulated!
145 - 2019-02-231016Falcons-Admirals-
149 - 2019-02-271045Crunch-Admirals-
151 - 2019-03-011062Admirals-Checkers-
153 - 2019-03-031076Griffins-Admirals-
157 - 2019-03-071103Barracuda-Admirals-
158 - 2019-03-081114Admirals-Wolves-
163 - 2019-03-131138Rampage-Admirals-
166 - 2019-03-161157Griffins-Admirals-
170 - 2019-03-201176Admirals-Wolves-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
8 0 - 0.00% 0$0$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
2,473,771$ 2,805,000$ 2,260,000$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 2,470,676$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 36 16,404$ 590,544$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
201863292402611460465-530178012112262032333121601400234262-28714607841244201041941594248375787084022259678867910331789151.12%1539637.25%5532109948.41%452101544.53%709158044.87%144490113044981057550
Total Regular Season63292402611460465-530178012112262032333121601400234262-28714607841244201041941594248375787084022259678867910331789151.12%1539637.25%5532109948.41%452101544.53%709158044.87%144490113044981057550