Admirals

GP: 1 | W: 1 | L: 0 | OTL: 0 | P: 2
GF: 7 | GA: 2 | PP%: 50.00% | PK%: 100.00%
GM : Stephane Boud | Morale : 51 | Team Overall : 59
Next Games vs Griffins
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Derek MacKenzieXX99.008267877367599658846256827575766651660
2Ryan HartmanX99.007958748369659462517166612560606951650
3Charles HudonX100.008344847463668270497366592553536951640
4Daniel CarrX100.007143927870627267317170642556567051640
5Nick CousinsX100.008153867561648364496070696761626951640
6Jack RoslovicX100.006742977468628166447470592546467051630
7Jacob de La RoseXX100.008857847778627959746258702558596548630
8Martin FrkX100.007644927171568576256670532552526951630
9Andrew MillerXX100.007265886765697069507163646044446651620
10Dylan Strome (R)X100.006141887371647170766971562547476851620
11Sonny MilanoX100.006541937467598270256276542550507051620
12Ryan HaggertyX100.007773866873666766506365666244446651610
13Joakim RyanX99.006541957767717961255248692551516151630
14T.J. BrennanX100.007578676478798461255453645045456151620
15Victor Mete (R)X100.005540978165686367255247642555555951610
16MacKenzie WeegarX100.008365846868657763255048642551516051610
17Darren Raddysh (R)X100.007973946573687253254051644844445951590
Scratches
1Frank VatranoXXX100.007744778275576265505770552558586649610
2Michael McCarronXX100.009999537291528457735655672552526249610
3Sam Anas (R)XX100.006857926257798267806565626244446749610
4Tanner FritzX100.008244916969638264526159692547476549610
5Nikita ScherbakXX100.006942907666657766255868582546466749600
6Danick MartelXX100.006457816757768062785366596344446449590
7Michael MerschX100.007873916873565563506162665944446549590
8Lucas WallmarkX100.007743937665558257805059562545456249580
9Axel Holmstrom (R)X100.008072976272667054685648654644445849570
10Daniel PribylX100.008074956374585957715654655144446049570
11Matt CareyX100.007071696771616355694561605844445949560
12Kyle PlatzerX100.007366906766626454684756615344445949560
13Michael Carcone (R)X100.006462706362747955504858575544445949560
14Tim BozonX100.007572826272585955504858625544445949550
15Jean-Christophe Beaudin (R)XX100.007569906269636749614746614444445549540
16Markus EisenschmidXX100.007267846367616450634748604644445449530
17Angelo MiceliX100.00596269664948595256495255504444149520
18Brennan Menell (R)X100.007466936466798651254345614344445649590
19Rinat ValievX100.008076886476606352254345644345455649580
20James de Haas (R)X100.008278906678555750254540653844445449580
21Mac BennettX100.007467896267576046254641603944445149550
22Jacob GravesX100.007472786572535451253751614844445649550
23Simon Bourque (R)X100.007267826367647044253339583744445049540
TEAM AVERAGE99.93746186696963735948555762414848615060
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Charlie Lindgren98.00717974688062587078716545457051660
2Matthew O'Connor100.00526581814852505749493044445351550
Scratches
1Zachary Fucale100.00516379744751505648483044445249530
TEAM AVERAGE99.3358697874585553615856424444585058
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Derek MacKenzieAdmirals (Nas)C/LW1033100170230.00%22121.9301102000000058.33%3610002.7400000001
2Jack RoslovicAdmirals (Nas)C121330031202100.00%21313.7700000000000033.33%300004.3600000100
3Martin FrkAdmirals (Nas)RW1112-2000031133.33%11515.951011100000000.00%001002.5100000000
4Ryan HartmanAdmirals (Nas)RW11121002351120.00%02222.030000200000000.00%100001.8200000010
5Andrew MillerAdmirals (Nas)C/RW1011200111010.00%01212.77000000000000100.00%100001.5700000000
6T.J. BrennanAdmirals (Nas)D1011120540000.00%42525.780000200000000.00%001000.7800000000
7Victor MeteAdmirals (Nas)D1011100411000.00%12121.120110100000000.00%000000.9500000000
8Dylan StromeAdmirals (Nas)C1011100021010.00%088.62000000000000100.00%400002.3200000000
9Joakim RyanAdmirals (Nas)D1011200241120.00%23030.130000200000000.00%002000.6600000000
10Daniel CarrAdmirals (Nas)LW11011003251120.00%12020.871012200000100.00%200000.9600000000
11Jacob de La RoseAdmirals (Nas)C/LW110125535110100.00%01212.330000000000000.00%000001.6200010000
12Ryan HaggertyAdmirals (Nas)RW110110021101100.00%088.620000000000000.00%000002.3200000000
13Sonny MilanoAdmirals (Nas)LW1011200032000.00%01212.320000000000000.00%000001.6200000000
14Charles HudonAdmirals (Nas)LW1000-200411000.00%01616.480000100000000.00%000000.0000000000
15Darren RaddyshAdmirals (Nas)D1000200501000.00%01515.970000000000000.00%002000.0000000000
16MacKenzie WeegarAdmirals (Nas)D1000000231000.00%22323.350000100000000.00%001000.0000000000
17Nick CousinsAdmirals (Nas)C1000-200222020.00%11515.9500001000000025.00%801000.0000000000
Team Total or Average1771219147539402871525.00%1629717.53224317000011052.73%5518001.2800010111
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Charlie LindgrenAdmirals (Nas)11000.9412.00600023418000.000010000
Team Total or Average11000.9412.00600023418000.000010000


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers CONT StatusType Current Salary Salary Year 2 Salary Year 3 Salary Year 4 Salary Year 5 Salary Year 6 Salary Year 7 Salary Year 8 Salary Year 9 Salary Year 10 Link
Andrew MillerAdmirals (Nas)C/RW291988-09-17No181 Lbs5 ft10NoNoNo1UFAPro & Farm800,000$Link
Angelo MiceliAdmirals (Nas)C241994-03-01No179 Lbs5 ft9NoNoNo1RFAPro & Farm550,000$Link
Axel HolmstromAdmirals (Nas)C221996-06-29Yes198 Lbs6 ft0NoNoNo3RFAPro & Farm500,000$500,000$500,000$Link
Brennan MenellAdmirals (Nas)D211997-05-24Yes183 Lbs5 ft11NoNoNo3RFAPro & Farm750,000$750,000$750,000$Link
Charles HudonAdmirals (Nas)LW241994-06-23No195 Lbs5 ft10NoNoNo2RFAPro & Farm850,000$850,000$Link
Charlie LindgrenAdmirals (Nas)D241993-12-17No190 Lbs6 ft2NoNoNo1RFAPro & Farm950,000$Link
Danick MartelAdmirals (Nas)C/LW231994-12-12No162 Lbs5 ft8NoNoNo2RFAPro & Farm700,000$700,000$Link
Daniel CarrAdmirals (Nas)LW261991-11-01No188 Lbs6 ft0NoNoNo1RFAPro & Farm800,000$Link
Daniel PribylAdmirals (Nas)C251992-12-17No192 Lbs6 ft4NoNoNo1RFAPro & Farm650,000$Link
Darren RaddyshAdmirals (Nas)D221996-02-28Yes182 Lbs6 ft0NoNoNo4RFAPro & Farm900,000$900,000$900,000$900,000$Link
Derek MacKenzieAdmirals (Nas)C/LW361982-07-14 7:21:32 AMNo181 Lbs5 ft11NoNoNo1UFAPro & Farm1,350,000$Link
Dylan StromeAdmirals (Nas)C211997-03-07Yes185 Lbs6 ft3NoNoNo3RFAPro & Farm950,000$950,000$950,000$Link
Frank VatranoAdmirals (Nas)C/LW/RW241994-03-14No201 Lbs5 ft9NoNoNo1RFAPro & Farm900,000$Link
Jack RoslovicAdmirals (Nas)C211997-01-28No187 Lbs6 ft1NoNoNo2RFAPro & Farm900,000$900,000$Link
Jacob GravesAdmirals (Nas)D231995-03-27No192 Lbs6 ft2NoNoNo2RFAPro & Farm650,000$650,000$Link
Jacob de La RoseAdmirals (Nas)C/LW231995-05-20No214 Lbs6 ft3NoNoNo2RFAPro & Farm950,000$950,000$Link
James de HaasAdmirals (Nas)D241994-05-03Yes210 Lbs6 ft4NoNoNo1RFAPro & FarmLink
Jean-Christophe BeaudinAdmirals (Nas)C/RW211997-03-25Yes185 Lbs6 ft1NoNoNo3RFAPro & Farm750,000$750,000$750,000$Link
Joakim RyanAdmirals (Nas)D251993-06-17No185 Lbs5 ft11NoNoNo1RFAPro & Farm500,000$Link
Kyle PlatzerAdmirals (Nas)C231995-03-03No172 Lbs6 ft0NoNoNo1RFAPro & Farm650,000$Link
Lucas WallmarkAdmirals (Nas)C231995-09-05No176 Lbs6 ft0NoNoNo2RFAPro & Farm650,000$650,000$Link
Mac BennettAdmirals (Nas)D271991-03-25No182 Lbs6 ft0NoNoNo1RFAPro & Farm600,000$Link
MacKenzie WeegarAdmirals (Nas)D241994-01-07No212 Lbs6 ft0NoNoNo1RFAPro & Farm600,000$Link
Markus EisenschmidAdmirals (Nas)C/RW231995-01-22No169 Lbs6 ft0NoNoNo1RFAPro & Farm550,000$Link
Martin FrkAdmirals (Nas)RW241993-10-04No194 Lbs6 ft1NoNoNo2RFAPro & Farm950,000$950,000$Link
Matt CareyAdmirals (Nas)LW261992-02-28No195 Lbs6 ft0NoNoNo1RFAPro & Farm750,000$Link
Matthew O'ConnorAdmirals (Nas)RW261992-02-14No186 Lbs6 ft5NoNoNo1RFAPro & Farm900,000$Link
Michael CarconeAdmirals (Nas)LW221996-05-18Yes170 Lbs5 ft10NoNoNo1RFAPro & Farm700,000$Link
Michael McCarronAdmirals (Nas)C/RW231995-03-06No231 Lbs6 ft6NoNoNo1RFAPro & Farm900,000$Link
Michael MerschAdmirals (Nas)LW261992-01-10No213 Lbs6 ft2NoNoNo2RFAPro & Farm600,000$600,000$Link
Nick CousinsAdmirals (Nas)C251993-07-19No188 Lbs5 ft10NoNoNo3RFAPro & Farm900,000$900,000$900,000$Link
Nikita ScherbakAdmirals (Nas)LW/RW221995-12-29No190 Lbs6 ft2NoNoNo1RFAPro & Farm900,000$Link
Rinat ValievAdmirals (Nas)D231995-05-11No215 Lbs6 ft3NoNoNo1RFAPro & Farm750,000$Link
Ryan HaggertyAdmirals (Nas)RW251993-03-03No201 Lbs6 ft0NoNoNo1RFAPro & Farm700,000$Link
Ryan HartmanAdmirals (Nas)RW231994-09-19No181 Lbs6 ft0NoNoNo3RFAPro & Farm1,800,000$1,800,000$1,800,000$Link
Sam AnasAdmirals (Nas)C/RW251993-05-31Yes163 Lbs5 ft8NoNoNo1RFAPro & Farm700,000$Link
Simon BourqueAdmirals (Nas)D211997-01-12Yes183 Lbs6 ft0NoNoNo3RFAPro & Farm500,000$500,000$500,000$Link
Sonny MilanoAdmirals (Nas)LW221996-05-11No197 Lbs6 ft2NoNoNo1RFAPro & Farm900,000$Link
T.J. BrennanAdmirals (Nas)D281990-04-03No216 Lbs6 ft1NoNoNo1UFAPro & Farm800,000$Link
Tanner FritzAdmirals (Nas)C271991-08-20No192 Lbs5 ft11NoNoNo3RFAPro & Farm600,000$600,000$600,000$Link
Tim BozonAdmirals (Nas)LW241994-03-24No196 Lbs6 ft1NoNoNo1RFAPro & Farm750,000$Link
Victor MeteAdmirals (Nas)D201998-06-07Yes174 Lbs5 ft10NoNoNo3ELCPro & Farm650,000$650,000$650,000$Link
Zachary FucaleAdmirals (Nas)G231995-05-27No187 Lbs6 ft2NoNoNo1RFAPro & Farm850,000$Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
4324.02190 Lbs6 ft01.67768,605$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Daniel CarrDerek MacKenzieRyan Hartman40122
2Charles HudonNick CousinsMartin Frk30122
3Jacob de La RoseJack RoslovicAndrew Miller20122
4Sonny MilanoDylan StromeRyan Haggerty10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Joakim RyanT.J. Brennan40122
2MacKenzie WeegarVictor Mete30122
3Darren RaddyshJoakim Ryan20122
4T.J. BrennanMacKenzie Weegar10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Daniel CarrDerek MacKenzieRyan Hartman60122
2Charles HudonNick CousinsMartin Frk40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Joakim RyanT.J. Brennan60122
2MacKenzie WeegarVictor Mete40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Derek MacKenzieRyan Hartman60122
2Daniel CarrCharles Hudon40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Joakim RyanT.J. Brennan60122
2MacKenzie WeegarVictor Mete40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Derek MacKenzie60122Joakim RyanT.J. Brennan60122
2Ryan Hartman40122MacKenzie WeegarVictor Mete40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Derek MacKenzieRyan Hartman60122
2Daniel CarrCharles Hudon40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Joakim RyanT.J. Brennan60122
2MacKenzie WeegarVictor Mete40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Daniel CarrDerek MacKenzieRyan HartmanJoakim RyanT.J. Brennan
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Daniel CarrDerek MacKenzieRyan HartmanJoakim RyanT.J. Brennan
Extra Forwards
Normal PowerPlayPenalty Kill
Jack Roslovic, Jacob de La Rose, Sonny MilanoJack Roslovic, Jacob de La RoseSonny Milano
Extra Defensemen
Normal PowerPlayPenalty Kill
Darren Raddysh, Victor Mete, Joakim RyanDarren RaddyshVictor Mete, Joakim Ryan
Penalty Shots
Derek MacKenzie, Ryan Hartman, Daniel Carr, Charles Hudon, Nick Cousins
Goalie
#1 : Charlie Lindgren, #2 : Matthew O'Connor


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Griffins11000000725110000007250000000000021.00071219002320289811034167394250.00%10100.00%091656.25%122352.17%81650.00%1910219199
Since Last GM Reset11000000725110000007250000000000021.00071219002320289811034167394250.00%10100.00%091656.25%122352.17%81650.00%1910219199
Total11000000725110000007250000000000021.00071219002320289811034167394250.00%10100.00%091656.25%122352.17%81650.00%1910219199
Vs Conference11000000725110000007250000000000021.00071219002320289811034167394250.00%10100.00%091656.25%122352.17%81650.00%1910219199

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
12W17121928341673900
All Games
GPWLOTWOTL SOWSOLGFGA
110000072
Home Games
GPWLOTWOTL SOWSOLGFGA
110000072
Visitor Games
GPWLOTWOTL SOWSOLGFGA
000000000
Last 10 Games
WLOTWOTL SOWSOL
100000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
4250.00%10100.00%0
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
981102320
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
91656.25%122352.17%81650.00%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
1910219199


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2018-09-178Griffins2Admirals7WBoxScore
3 - 2018-09-1925Admirals-Wolves-
4 - 2018-09-2042Monsters-Admirals-
6 - 2018-09-2265Admirals-IceHogs-
7 - 2018-09-2371IceHogs-Admirals-
9 - 2018-09-2594Wolves-Admirals-
10 - 2018-09-26107Admirals-Gulls-
11 - 2018-09-27110Admirals-Griffins-
Trade Deadline --- Trades can’t be done after this day is simulated!
14 - 2018-09-30135Admirals-Monsters-
15 - 2018-10-01141Americans-Admirals-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
4 0 - 0.00% 0$0$3000100

Expenses
Players Total SalariesPlayers Total Average SalariesCoaches Salaries
3,305,000$ 2,670,000$ 0$
Year To Date ExpensesSalary Cap Per DaysSalary Cap To Date
0$ 0$ 0$

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 16 0$ 0$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT