Admirals

GP: 24 | W: 12 | L: 10 | OTL: 2 | P: 26
GF: 80 | GA: 68 | PP%: 46.38% | PK%: 47.62%
GM : Stephane Boud | Morale : 50 | Team Overall : 59
Next Games vs Monsters
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Ryan HartmanX99.007958748369659462517166612560606950650
2Daniel CarrX99.007143927870627267317170642556567050640
3Nick CousinsX100.008153867561648364496070696761626950640
4Charles HudonX100.008344847463668270497366592553536950630
5Jack RoslovicX100.006742977468628166447470592546467050630
6Jacob de La RoseXX100.008857847778627959746258702558596550630
7Andrew MillerXX100.007265886765697069507163646044446650620
8Dylan Strome (R)X100.006141887371647170766971562547476850620
9Martin FrkX100.007644927171568576256670532552526950620
10Sonny MilanoX100.006541937467598270256276542550507050620
11Frank VatranoXXX100.007744778275576265505770552558586650610
12Ryan HaggertyX100.007773866873666766506365666244446650610
13Joakim RyanX100.006541957767717961255248692551516150620
14T.J. BrennanX100.007578676478798461255453645045456150610
15Victor Mete (R)X100.005540978165686367255247642555555950610
16MacKenzie WeegarX100.008365846868657763255048642551516050610
17Darren Raddysh (R)X100.007973946573687253254051644844445950590
Scratches
1Michael McCarronXX100.009999537291528457735655672552526250610
2Sam Anas (R)XX100.006857926257798267806565626244446750610
3Tanner FritzX100.008244916969638264526159692547476550610
4Nikita ScherbakXX100.006942907666657766255868582546466750600
5Danick MartelXX100.006457816757768062785366596344446450590
6Michael MerschX100.007873916873565563506162665944446550590
7Lucas WallmarkX100.007743937665558257805059562545456250570
8Axel Holmstrom (R)X100.008072976272667054685648654644445850570
9Daniel PribylX100.008074956374585957715654655144446050570
10Matt CareyX100.007071696771616355694561605844445950560
11Kyle PlatzerX100.007366906766626454684756615344445950550
12Michael Carcone (R)X100.006462706362747955504858575544445950550
13Tim BozonX100.007572826272585955504858625544445950550
14Markus EisenschmidXX100.007267846367616450634748604644445450530
15Jean-Christophe Beaudin (R)XX100.007569906269636749614746614444445550530
16Angelo MiceliX100.00596269664948595256495255504444150510
17Brennan Menell (R)X100.007466936466798651254345614344445650580
18Rinat ValievX100.008076886476606352254345644345455650580
19James de Haas (R)X100.008278906678555750254540653844445450570
20Jacob GravesX100.007472786572535451253751614844445650550
21Mac BennettX100.007467896267576046254641603944445150540
22Simon Bourque (R)X100.007267826367647044253339583744445050540
TEAM AVERAGE99.95746086696963725947555762404848605059
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Charlie Lindgren100.00717974688062587078716545457050660
2Matthew O'Connor100.00526581814852505749493044445350550
Scratches
1Zachary Fucale100.00516379744751505648483044445250530
TEAM AVERAGE100.0058697874585553615856424444585058
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Ryan HartmanAdmirals (Nas)RW24264268-1052304733127347520.47%1548920.3910102015470001363048.48%333217012.7801114432
2Daniel CarrAdmirals (Nas)LW24302656-1112103819120307425.00%1446319.30791616470003102140.63%322410032.4201002233
3Charles HudonAdmirals (Nas)LW24152439-180442582234618.29%1137415.613584270001101042.86%141410022.0800000130
4Martin FrkAdmirals (Nas)RW24181735-240281664253928.12%1936415.19437527000002254.55%22149011.9200000203
5Nick CousinsAdmirals (Nas)C2462430-1275263636173616.67%936215.10156227000001051.47%37588001.6600010000
6Derek MacKenziePredatorsC/LW1642529-12814522392871414.29%1329818.6838114270000231065.09%464214001.9401333001
7Dylan StromeAdmirals (Nas)C24419236008104619288.70%524110.0600000000001164.91%57113001.9100000010
8Sonny MilanoAdmirals (Nas)LW2419423500121660254331.67%628411.87000000001241135.71%14218011.6100000100
9T.J. BrennanAdmirals (Nas)D2421719-17522043343521125.71%4060525.24224336000128000.00%0328000.6300121000
10Jack RoslovicAdmirals (Nas)C2413619000132164223620.31%632213.4301118000070050.61%164187011.1800000010
11Andrew MillerAdmirals (Nas)C/RW249918-21410231037172124.32%1126411.0410111000000050.00%8107001.3600020001
12Joakim RyanAdmirals (Nas)D2421315-332026424612254.35%5666427.70011236000139000.00%21142000.4500000000
13Jacob de La RoseAdmirals (Nas)C/LW244711-22023312412916.67%1430512.72011070002130062.50%8313000.7200000001
14Ryan HaggertyAdmirals (Nas)RW111454005613227.69%31029.320000000000000.00%015000.9800000000
15Darren RaddyshAdmirals (Nas)D24033-737251033000.00%91917.990000000000000.00%007000.3100014000
Team Total or Average339153240393-8329114536834178526646019.49%231533615.74314576532960001019512556.66%1193172188091.470351014101111
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Matthew O'ConnorAdmirals (Nas)43010.8914.41245001816598000.667344000
Team Total or Average43010.8914.41245001816598000.667344000


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers CONT StatusType Current Salary Salary Year 2 Salary Year 3 Salary Year 4 Salary Year 5 Salary Year 6 Salary Year 7 Salary Year 8 Salary Year 9 Salary Year 10 Link
Andrew MillerAdmirals (Nas)C/RW301988-09-17No181 Lbs5 ft10NoNoNo1UFAPro & Farm800,000$Link
Angelo MiceliAdmirals (Nas)C241994-03-01No179 Lbs5 ft9NoNoNo1RFAPro & Farm550,000$Link
Axel HolmstromAdmirals (Nas)C221996-06-29Yes198 Lbs6 ft0NoNoNo3RFAPro & Farm500,000$500,000$500,000$Link
Brennan MenellAdmirals (Nas)D211997-05-24Yes183 Lbs5 ft11NoNoNo3RFAPro & Farm750,000$750,000$750,000$Link
Charles HudonAdmirals (Nas)LW241994-06-23No195 Lbs5 ft10NoNoNo2RFAPro & Farm850,000$850,000$Link
Charlie LindgrenAdmirals (Nas)D241993-12-17No190 Lbs6 ft2NoNoNo1RFAPro & Farm950,000$Link
Danick MartelAdmirals (Nas)C/LW231994-12-12No162 Lbs5 ft8NoNoNo2RFAPro & Farm700,000$700,000$Link
Daniel CarrAdmirals (Nas)LW271991-11-01No188 Lbs6 ft0NoNoNo1RFAPro & Farm800,000$Link
Daniel PribylAdmirals (Nas)C251992-12-17No192 Lbs6 ft4NoNoNo1RFAPro & Farm650,000$Link
Darren RaddyshAdmirals (Nas)D221996-02-28Yes182 Lbs6 ft0NoNoNo4RFAPro & Farm900,000$900,000$900,000$900,000$Link
Dylan StromeAdmirals (Nas)C211997-03-07Yes185 Lbs6 ft3NoNoNo3RFAPro & Farm950,000$950,000$950,000$Link
Frank VatranoAdmirals (Nas)C/LW/RW241994-03-14No201 Lbs5 ft9NoNoNo1RFAPro & Farm900,000$Link
Jack RoslovicAdmirals (Nas)C211997-01-28No187 Lbs6 ft1NoNoNo2RFAPro & Farm900,000$900,000$Link
Jacob GravesAdmirals (Nas)D231995-03-27No192 Lbs6 ft2NoNoNo2RFAPro & Farm650,000$650,000$Link
Jacob de La RoseAdmirals (Nas)C/LW231995-05-20No214 Lbs6 ft3NoNoNo2RFAPro & Farm950,000$950,000$Link
James de HaasAdmirals (Nas)D241994-05-03Yes210 Lbs6 ft4NoNoNo1RFAPro & FarmLink
Jean-Christophe BeaudinAdmirals (Nas)C/RW211997-03-25Yes185 Lbs6 ft1NoNoNo3RFAPro & Farm750,000$750,000$750,000$Link
Joakim RyanAdmirals (Nas)D251993-06-17No185 Lbs5 ft11NoNoNo1RFAPro & Farm500,000$Link
Kyle PlatzerAdmirals (Nas)C231995-03-03No172 Lbs6 ft0NoNoNo1RFAPro & Farm650,000$Link
Lucas WallmarkAdmirals (Nas)C231995-09-05No176 Lbs6 ft0NoNoNo2RFAPro & Farm650,000$650,000$Link
Mac BennettAdmirals (Nas)D271991-03-25No182 Lbs6 ft0NoNoNo1RFAPro & Farm600,000$Link
MacKenzie WeegarAdmirals (Nas)D241994-01-07No212 Lbs6 ft0NoNoNo1RFAPro & Farm600,000$Link
Markus EisenschmidAdmirals (Nas)C/RW231995-01-22No169 Lbs6 ft0NoNoNo1RFAPro & Farm550,000$Link
Martin FrkAdmirals (Nas)RW251993-10-04No194 Lbs6 ft1NoNoNo2RFAPro & Farm950,000$950,000$Link
Matt CareyAdmirals (Nas)LW261992-02-28No195 Lbs6 ft0NoNoNo1RFAPro & Farm750,000$Link
Matthew O'ConnorAdmirals (Nas)RW261992-02-14No186 Lbs6 ft5NoNoNo1RFAPro & Farm900,000$Link
Michael CarconeAdmirals (Nas)LW221996-05-18Yes170 Lbs5 ft10NoNoNo1RFAPro & Farm700,000$Link
Michael McCarronAdmirals (Nas)C/RW231995-03-06No231 Lbs6 ft6NoNoNo1RFAPro & Farm900,000$Link
Michael MerschAdmirals (Nas)LW261992-01-10No213 Lbs6 ft2NoNoNo2RFAPro & Farm600,000$600,000$Link
Nick CousinsAdmirals (Nas)C251993-07-19No188 Lbs5 ft10NoNoNo3RFAPro & Farm900,000$900,000$900,000$Link
Nikita ScherbakAdmirals (Nas)LW/RW221995-12-29No190 Lbs6 ft2NoNoNo1RFAPro & Farm900,000$Link
Rinat ValievAdmirals (Nas)D231995-05-11No215 Lbs6 ft3NoNoNo1RFAPro & Farm750,000$Link
Ryan HaggertyAdmirals (Nas)RW251993-03-03No201 Lbs6 ft0NoNoNo1RFAPro & Farm700,000$Link
Ryan HartmanAdmirals (Nas)RW241994-09-19No181 Lbs6 ft0NoNoNo3RFAPro & Farm1,800,000$1,800,000$1,800,000$Link
Sam AnasAdmirals (Nas)C/RW251993-05-31Yes163 Lbs5 ft8NoNoNo1RFAPro & Farm700,000$Link
Simon BourqueAdmirals (Nas)D211997-01-12Yes183 Lbs6 ft0NoNoNo3RFAPro & Farm500,000$500,000$500,000$Link
Sonny MilanoAdmirals (Nas)LW221996-05-11No197 Lbs6 ft2NoNoNo1RFAPro & Farm900,000$Link
T.J. BrennanAdmirals (Nas)D281990-04-03No216 Lbs6 ft1NoNoNo1UFAPro & Farm800,000$Link
Tanner FritzAdmirals (Nas)C271991-08-20No192 Lbs5 ft11NoNoNo3RFAPro & Farm600,000$600,000$600,000$Link
Tim BozonAdmirals (Nas)LW241994-03-24No196 Lbs6 ft1NoNoNo1RFAPro & Farm750,000$Link
Victor MeteAdmirals (Nas)D201998-06-07Yes174 Lbs5 ft10NoNoNo3ELCPro & Farm650,000$650,000$650,000$Link
Zachary FucaleAdmirals (Nas)G231995-05-27No187 Lbs6 ft2NoNoNo1RFAPro & Farm850,000$Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
4223.83190 Lbs6 ft01.69754,762$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Daniel CarrRyan Hartman40122
2Charles HudonNick CousinsMartin Frk30122
3Jacob de La RoseJack RoslovicAndrew Miller20122
4Sonny MilanoDylan Strome10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Joakim RyanT.J. Brennan40122
230122
3Darren RaddyshJoakim Ryan20122
4T.J. Brennan10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Daniel CarrRyan Hartman60122
2Charles HudonNick CousinsMartin Frk40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Joakim RyanT.J. Brennan60122
240122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Ryan Hartman60122
2Daniel CarrCharles Hudon40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Joakim RyanT.J. Brennan60122
240122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
160122Joakim RyanT.J. Brennan60122
2Ryan Hartman4012240122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Ryan Hartman60122
2Daniel CarrCharles Hudon40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Joakim RyanT.J. Brennan60122
240122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Daniel CarrRyan HartmanJoakim RyanT.J. Brennan
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Daniel CarrRyan HartmanJoakim RyanT.J. Brennan
Extra Forwards
Normal PowerPlayPenalty Kill
Jack Roslovic, Jacob de La Rose, Sonny MilanoJack Roslovic, Jacob de La RoseSonny Milano
Extra Defensemen
Normal PowerPlayPenalty Kill
Darren Raddysh, , Joakim RyanDarren Raddysh, Joakim Ryan
Penalty Shots
, Ryan Hartman, Daniel Carr, Charles Hudon, Nick Cousins
Goalie
#1 : , #2 :


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Americans11000000651110000006510000000000021.00069150042715202725929927442814218100.00%10100.00%021540353.35%21339454.06%29557851.04%521306505201420217
2Barracuda1100000011830000000000011000000118321.00011193000427152044259299274440141314100.00%440.00%021540353.35%21339454.06%29557851.04%521306505201420217
3Bears10100000610-40000000000010100000610-400.0006101600427152031259299274442133019200.00%5340.00%021540353.35%21339454.06%29557851.04%521306505201420217
4Comets1000010089-1000000000001000010089-110.50081523004271520342592992744421013185360.00%4175.00%021540353.35%21339454.06%29557851.04%521306505201420217
5Condors11000000945000000000001100000094521.00091524004271520332592992744411148255360.00%40100.00%021540353.35%21339454.06%29557851.04%521306505201420217
6Crunch1010000068-2000000000001010000068-200.0006101600427152039259299274430124235240.00%220.00%021540353.35%21339454.06%29557851.04%521306505201420217
7Falcons1100000010281100000010280000000000021.00010142400427152027259299274434435214250.00%50100.00%021540353.35%21339454.06%29557851.04%521306505201420217
8Griffins211000001316-31100000076110100000610-420.500132336004271520682592992744882528358675.00%4250.00%021540353.35%21339454.06%29557851.04%521306505201420217
9Gulls11000000761110000007610000000000021.000712190042715204725929927443192184250.00%110.00%021540353.35%21339454.06%29557851.04%521306505201420217
10Heat1100000010641100000010640000000000021.000101727004271520412592992744371318173133.33%4250.00%021540353.35%21339454.06%29557851.04%521306505201420217
11IceCaps1100000010910000000000011000000109121.0001016260042715204025929927444519151811100.00%5340.00%021540353.35%21339454.06%29557851.04%521306505201420217
12IceHogs10100000311-80000000000010100000311-800.00036900427152038259299274448131912100.00%220.00%021540353.35%21339454.06%29557851.04%521306505201420217
13Monsters312000002325-221100000161601010000079-220.33323345700427152010425929927441393428567342.86%4325.00%021540353.35%21339454.06%29557851.04%521306505201420217
14Reign1000000134-11000000134-10000000000010.5003470042715203525929927443795193266.67%000.00%021540353.35%21339454.06%29557851.04%521306505201420217
15Senators11000000844110000008440000000000021.000815230042715204425929927442262163133.33%110.00%021540353.35%21339454.06%29557851.04%521306505201420217
Since Last GM Reset24121000101165176-1111820000180681213480010085108-23260.5421652734380042715208332592992744983321331412693246.38%633347.62%021540353.35%21339454.06%29557851.04%521306505201420217
17Sound Tigers10100000412-810100000412-80000000000000.0004711004271520332592992744581840142150.00%5260.00%021540353.35%21339454.06%29557851.04%521306505201420217
Total24121000101165176-1111820000180681213480010085108-23260.5421652734380042715208332592992744983321331412693246.38%633347.62%021540353.35%21339454.06%29557851.04%521306505201420217
Vs Conference189700101125128-3861000016247151036001006381-18200.5561252063310042715206192592992744758239238304552749.09%442250.00%021540353.35%21339454.06%29557851.04%521306505201420217
Vs Division646000003148-1713100000972515000002241-1980.6673153840042715201862592992744269110488115533.33%14935.71%021540353.35%21339454.06%29557851.04%521306505201420217
21Wild1010000029-7000000000001010000029-700.0002460042715202525929927444017820100.00%4325.00%021540353.35%21339454.06%29557851.04%521306505201420217
22Wolves422000002628-211000000972312000001721-440.500264369004271520123259299274418180214913538.46%8450.00%021540353.35%21339454.06%29557851.04%521306505201420217

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
2426W116527343883398332133141200
All Games
GPWLOTWOTL SOWSOLGFGA
2412100101165176
Home Games
GPWLOTWOTL SOWSOLGFGA
118200018068
Visitor Games
GPWLOTWOTL SOWSOLGFGA
1348010085108
Last 10 Games
WLOTWOTL SOWSOL
550000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
693246.38%633347.62%0
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
25929927444271520
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
21540353.35%21339454.06%29557851.04%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
521306505201420217


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
2 - 2018-10-0311Monsters6Admirals9WBoxScore
4 - 2018-10-0527Admirals9Condors4WBoxScore
6 - 2018-10-0737Reign4Admirals3LXXBoxScore
7 - 2018-10-0848Admirals6Wolves5WBoxScore
9 - 2018-10-1070Heat6Admirals10WBoxScore
11 - 2018-10-1284Admirals2Wild9LBoxScore
13 - 2018-10-1495Admirals7Monsters9LBoxScore
16 - 2018-10-17114Griffins6Admirals7WBoxScore
17 - 2018-10-18126Admirals7Wolves9LBoxScore
19 - 2018-10-20140Admirals6Griffins10LBoxScore
21 - 2018-10-22153Monsters10Admirals7LBoxScore
24 - 2018-10-25173Falcons2Admirals10WBoxScore
26 - 2018-10-27186Admirals8Comets9LXBoxScore
28 - 2018-10-29205Wolves7Admirals9WBoxScore
30 - 2018-10-31218Admirals3IceHogs11LBoxScore
31 - 2018-11-01222Admirals4Wolves7LBoxScore
34 - 2018-11-04241Admirals6Bears10LBoxScore
35 - 2018-11-05249Senators4Admirals8WBoxScore
38 - 2018-11-08274Sound Tigers12Admirals4LBoxScore
40 - 2018-11-10286Admirals11Barracuda8WBoxScore
42 - 2018-11-12302Americans5Admirals6WBoxScore
44 - 2018-11-14314Admirals10IceCaps9WBoxScore
46 - 2018-11-16325Admirals6Crunch8LBoxScore
49 - 2018-11-19340Gulls6Admirals7WBoxScore
52 - 2018-11-22366Heat-Admirals-
54 - 2018-11-24380Admirals-Moose-
56 - 2018-11-26392Admirals-Stars-
58 - 2018-11-28400Gulls-Admirals-
60 - 2018-11-30423Admirals-Falcons-
62 - 2018-12-02433Devils-Admirals-
64 - 2018-12-04446Admirals-Monsters-
65 - 2018-12-05460IceHogs-Admirals-
67 - 2018-12-07474Admirals-Heat-
70 - 2018-12-10494Barracuda-Admirals-
73 - 2018-12-13517Admirals-Wolves-
74 - 2018-12-14524Monsters-Admirals-
78 - 2018-12-18549IceHogs-Admirals-
80 - 2018-12-20559Admirals-Condors-
84 - 2018-12-24583Senators-Admirals-
87 - 2018-12-27605Reign-Admirals-
89 - 2018-12-29623Admirals-Reign-
90 - 2018-12-30630Admirals-IceHogs-
92 - 2019-01-01644Wolf Pack-Admirals-
95 - 2019-01-04666Admirals-Monsters-
97 - 2019-01-06677Comets-Admirals-
99 - 2019-01-08689Admirals-Gulls-
101 - 2019-01-10705Stars-Admirals-
103 - 2019-01-12717Admirals-Rampage-
106 - 2019-01-15736Wolves-Admirals-
108 - 2019-01-17748Admirals-IceHogs-
110 - 2019-01-19766Wild-Admirals-
112 - 2019-01-21776Admirals-Griffins-
114 - 2019-01-23790Admirals-Bruins-
115 - 2019-01-24802Pirates-Admirals-
117 - 2019-01-26811Admirals-Phantoms-
119 - 2019-01-28832Wolves-Admirals-
121 - 2019-01-30843Admirals-Wild-
123 - 2019-02-01855Admirals-Comets-
124 - 2019-02-02864Reign-Admirals-
128 - 2019-02-06894Penguins-Admirals-
130 - 2019-02-08904Admirals-Pirates-
132 - 2019-02-10923Admirals-Stars-
133 - 2019-02-11929Penguins-Admirals-
137 - 2019-02-15956Admirals-Marlies-
138 - 2019-02-16959Condors-Admirals-
141 - 2019-02-19984Rampage-Admirals-
143 - 2019-02-211005Admirals-Wild-
Trade Deadline --- Trades can’t be done after this day is simulated!
145 - 2019-02-231016Falcons-Admirals-
149 - 2019-02-271045Crunch-Admirals-
151 - 2019-03-011062Admirals-Checkers-
153 - 2019-03-031076Griffins-Admirals-
157 - 2019-03-071103Barracuda-Admirals-
158 - 2019-03-081114Admirals-Wolves-
163 - 2019-03-131138Rampage-Admirals-
166 - 2019-03-161157Griffins-Admirals-
170 - 2019-03-201176Admirals-Wolves-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
27 0 - 0.00% 0$0$3000100

Expenses
Players Total SalariesPlayers Total Average SalariesCoaches Salaries
3,170,000$ 2,535,000$ 0$
Year To Date ExpensesSalary Cap Per DaysSalary Cap To Date
932,821$ 0$ 932,061$

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 122 18,538$ 2,261,636$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
201824121000101165176-1111820000180681213480010085108-23261652734380042715208332592992744983321331412693246.38%633347.62%021540353.35%21339454.06%29557851.04%521306505201420217
Total Regular Season24121000101165176-1111820000180681213480010085108-23261652734380042715208332592992744983321331412693246.38%633347.62%021540353.35%21339454.06%29557851.04%521306505201420217